×

Lattice Boltzmann method simulation gas slip flow in long microtubes. (English) Zbl 1231.76233

Summary: This paper aims to examine how using lattice Boltzmann method (LBM) aids the study of the isothermal-gas flow with slight rarefaction in long microtubes. A revised axisymmetric lattice Boltzmann model is proposed to simulate the flow in microtubes. The wall boundary condition combining the bounce-back and specular-reflection schemes is used to capture the slip velocity on the wall. Appropriate relation between the Knudsen number and relax-time constant is defined. The computed-slip velocity, average velocity and non-linear pressure distribution along the microtube are in excellent agreement with analytical solution of the weakly compressible Navier-Stokes equations. The calculated-friction factors are also consistent with available experimental data. For simulations of slip flow in microtube, LBM is more accurate and efficient than DSMC method. The laminar flow in circular microtube is assumed to be axisymmetric. The present LBM is only applied to the simulation of slip flows (0.01?<?Kn0<0.1) in microtube. Lattice-BGK method is a very useful tool to investigate the micro slip flows. A revised axisymmetric D2Q9 lattice Boltzmann model is proposed to simulate the slip flow in axisymmetric microtubes.

MSC:

76M28 Particle methods and lattice-gas methods
76D99 Incompressible viscous fluids

References:

[1] DOI: 10.1109/84.585795 · doi:10.1109/84.585795
[2] Choi, S.B., Barron, R. and Warrington, R. (1991), ”Fluid Flow and heat transfer in microtubes”, Micromechanical Sensors, Actuator and Systems, ASME DSC, Vol. 32, pp. 123-34.
[3] DOI: 10.1103/PhysRevE.65.051925 · doi:10.1103/PhysRevE.65.051925
[4] DOI: 10.1115/1.2822013 · doi:10.1115/1.2822013
[5] DOI: 10.1103/PhysRevE.64.011208 · doi:10.1103/PhysRevE.64.011208
[6] DOI: 10.1023/B:JOSS.0000015179.12689.e4 · Zbl 0939.82042 · doi:10.1023/B:JOSS.0000015179.12689.e4
[7] DOI: 10.1108/09615530610644262 · doi:10.1108/09615530610644262
[8] DOI: 10.1299/jsmeb.43.634 · doi:10.1299/jsmeb.43.634
[9] DOI: 10.1002/fld.997 · Zbl 1074.76038 · doi:10.1002/fld.997
[10] DOI: 10.1063/1.1483841 · Zbl 1185.76227 · doi:10.1063/1.1483841
[11] DOI: 10.1515/IJNSNS.2003.4.2.187 · doi:10.1515/IJNSNS.2003.4.2.187
[12] DOI: 10.1023/A:1014523007427 · Zbl 1007.82007 · doi:10.1023/A:1014523007427
[13] DOI: 10.1007/BF00385729 · Zbl 0587.76123 · doi:10.1007/BF00385729
[14] DOI: 10.1209/0295-5075/17/6/001 · Zbl 1116.76419 · doi:10.1209/0295-5075/17/6/001
[15] DOI: 10.1103/PhysRevLett.89.064502 · doi:10.1103/PhysRevLett.89.064502
[16] DOI: 10.1142/S0129183104005747 · Zbl 1083.76050 · doi:10.1142/S0129183104005747
[17] DOI: 10.1017/S0022112093000011 · Zbl 0765.76075 · doi:10.1017/S0022112093000011
[18] DOI: 10.1088/0957-4484/10/4/302 · doi:10.1088/0957-4484/10/4/302
[19] Yu, D., Warrington, R., Barron, R. and Ameel, T. (1995), ”An experimental and theoretical investigation of fluid flow and heat transfer in Microtubes”, ASME/JSME Thermal Engineering Conference, Vol. 1, pp. 523-30.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.