×

Probing ultralight primordial black hole dark matter with XMM telescopes. (English) Zbl 07884682

Summary: Primordial black holes (PBHs), originating from the gravitational collapse of large overdensities in the early Universe, emerge as a compelling dark matter (DM) candidate across a broad mass range. Of particular interest are ultra-light PBHs with masses around \(10^{14}\) to \(10^{17}\,\mathrm{g}\), which are typically probed by searching their evaporation products. Using the soft X-ray signal measured by the XMM telescopes, we derive constraints on the fraction of PBHs dark matter with masses in the range \(10^{15}\)–\(10^{16}\,\mathrm{g}\). We find that observations exclude fraction \(f > 10^{-6}\) at 95% C.L. for mass \(M_{\mathrm{PBH}} = 10^{15}\,\mathrm{g}\).

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory
Full Text: DOI

References:

[1] Bertone, G.; Hooper, D.; Silk, J., Phys. Rep., 405, 279, 2005
[2] Zel’dovich, Y. B.; Novikov, I. D., Sov. Astron., A.J., 10, 602, 1967, (Engl. transl.)
[3] Chapline, G. F., Nature, 253, 251, 1975
[4] Carr, B. J.; Lidsey, J. E., Phys. Rev. D, 48, 543, 1993
[5] Ivanov, P.; Naselsky, P.; Novikov, I., Phys. Rev. D, 50, 7173, 1994
[6] Garcia-Bellido, J.; Linde, A. D.; Wands, D., Phys. Rev. D, 54, 6040, 1996
[7] Randall, L.; Soljacic, M.; Guth, A. H., Nucl. Phys. B, 472, 377, 1996
[8] Niikura, H.; Takada, M.; Yokoyama, S.; Sumi, T.; Masaki, S., Phys. Rev. D, 99, Article 083503 pp., 2019
[9] Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.; Vives-Arias, H.; Calderón-Infante, J., Astrophys. J. Lett., 836, L18, 2017
[10] Allsman, R. A., Astrophys. J. Lett., 550, L169, 2001
[11] Griest, K.; Cieplak, A. M.; Lehner, M. J., Astrophys. J., 786, 158, 2014
[12] Niikura, H., Nat. Astron., 3, 524, 2019
[13] Petač, M.; Lavalle, J.; Jedamzik, K., Phys. Rev. D, 105, Article 083520 pp., 2022
[14] Ali-Haïmoud, Y.; Kamionkowski, M., Phys. Rev. D, 95, Article 043534 pp., 2017
[15] Poulter, H.; Ali-Haïmoud, Y.; Hamann, J.; White, M.; Williams, A. G., 2019
[16] Carr, B. J.; Kohri, K.; Sendouda, Y.; Yokoyama, J., Phys. Rev. D, 81, Article 104019 pp., 2010
[17] Lehmann, B. V.; Profumo, S.; Yant, J., J. Cosmol. Astropart. Phys., 04, Article 007 pp., 2018
[18] Coogan, A.; Morrison, L.; Profumo, S., Phys. Rev. Lett., 126, Article 171101 pp., 2021
[19] Capanema, A.; Esmaeili, A.; Esmaili, A., J. Cosmol. Astropart. Phys., 12, Article 051 pp., 2021
[20] Chen, S.; Zhang, H.-H.; Long, G., Phys. Rev. D, 105, Article 063008 pp., 2022
[21] Agashe, K.; Chang, J. H.; Clark, S. J.; Dutta, B.; Tsai, Y.; Xu, T., Phys. Rev. D, 105, Article 123009 pp., 2022
[22] Xie, K.-P., J. Cosmol. Astropart. Phys., 06, Article 008 pp., 2023
[23] Korwar, M.; Profumo, S., J. Cosmol. Astropart. Phys., 05, Article 054 pp., 2023
[24] Jung, S.; Shin, C. S., Phys. Rev. Lett., 122, Article 041103 pp., 2019
[25] Chen, Z.-C.; Huang, Q.-G., J. Cosmol. Astropart. Phys., 08, Article 039 pp., 2020
[26] Abbott, B. P., Phys. Rev. Lett., 123, Article 161102 pp., 2019
[27] Kavanagh, B. J.; Gaggero, D.; Bertone, G., Phys. Rev. D, 98, Article 023536 pp., 2018
[28] Chen, Z.-C.; Yuan, C.; Huang, Q.-G., Phys. Rev. Lett., 124, Article 251101 pp., 2020
[29] Wang, Y.-F.; Huang, Q.-G.; Li, T. G.F.; Liao, S., Phys. Rev. D, 101, Article 063019 pp., 2020
[30] Dror, J. A.; Ramani, H.; Trickle, T.; Zurek, K. M., Phys. Rev. D, 100, Article 023003 pp., 2019
[31] Capela, F.; Pshirkov, M.; Tinyakov, P., Phys. Rev. D, 87, Article 123524 pp., 2013
[32] Graham, P. W.; Rajendran, S.; Varela, J., Phys. Rev. D, 92, Article 063007 pp., 2015
[33] Lu, B.-Q.; Wu, Y.-L., Phys. Rev. D, 99, Article 123023 pp., 2019
[34] Kierans, C. A., Proc. SPIE Int. Soc. Opt. Eng., 11444, Article 1144431 pp., 2020
[35] Tavani, M., J. High Energy Astrophys., 19, 1, 2018
[36] Orlando, E., J. Cosmol. Astropart. Phys., 07, Article 036 pp., 2022
[37] Saha, A. K.; Laha, R., Phys. Rev. D, 105, Article 103026 pp., 2022
[38] Bowman, J. D.; Rogers, A. E.E.; Monsalve, R. A.; Mozdzen, T. J.; Mahesh, N., Nature, 555, 67, 2018
[39] Singh, S.; Nambissan T., J.; Subrahmanyan, R.; Udaya Shankar, N.; Girish, B. S.; Raghunathan, A.; Somashekar, R.; Srivani, K. S.; Sathyanarayana Rao, M., Nat. Astron., 6, 607, 2022
[40] Mukhopadhyay, U.; Majumdar, D.; Paul, A., 2021
[41] Foster, J. W.; Kongsore, M.; Dessert, C.; Park, Y.; Rodd, N. L.; Cranmer, K.; Safdi, B. R., Phys. Rev. Lett., 127, Article 051101 pp., 2021
[42] Cirelli, M.; Fornengo, N.; Koechler, J.; Pinetti, E.; Roach, B. M., J. Cosmol. Astropart. Phys., 07, Article 026 pp., 2023
[43] De la Torre Luque, P.; Balaji, S.; Carenza, P., 2023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.