×

A review of spatial causal inference methods for environmental and epidemiological applications. (English) Zbl 07777967

Summary: The scientific rigor and computational methods of causal inference have had great impacts on many disciplines but have only recently begun to take hold in spatial applications. Spatial causal inference poses analytic challenges due to complex correlation structures and interference between the treatment at one location and the outcomes at others. In this paper, we review the current literature on spatial causal inference and identify areas of future work. We first discuss methods that exploit spatial structure to account for unmeasured confounding variables. We then discuss causal analysis in the presence of spatial interference including several common assumptions used to reduce the complexity of the interference patterns under consideration. These methods are extended to the spatiotemporal case where we compare and contrast the potential outcomes framework with Granger causality and to geostatistical analyses involving spatial random fields of treatments and responses. The methods are introduced in the context of observational environmental and epidemiological studies and are compared using both a simulation study and analysis of the effect of ambient air pollution on COVID-19 mortality rate. Code to implement many of the methods using the popular Bayesian software OpenBUGS is provided.
{© 2021 International Statistical Institute.}

MSC:

62Pxx Applications of statistics
62Hxx Multivariate analysis
62Mxx Inference from stochastic processes

References:

[1] Abadie, A. & Imbens, G.W.2016. Matching on the estimated propensity score. Econometrica, 84, 781-807. · Zbl 1410.62065
[2] Aronow, P.M., Samii, C. et al. 2017. Estimating average causal effects under general interference, with application to a social network experiment. Ann. Appl. Stat., 11(4), 1912-1947. · Zbl 1383.62329
[3] Ashenfelter, O. & Card, D.1985. Using the longitudinal structure of earnings to estimate the effect of training programs. Rev. Econ. Stat., 67(4), 648-660.
[4] Baddeley, A., Rubak, E. & Turner, R.2015. Spatial Point Patterns: Methodology and Applications With R. Boca Raton, Florida: Chapman and Hall/CRC.
[5] Baird, S., Bohren, J.A., McIntosh, C. & Özler, B.2018. Optimal design of experiments in the presence of interference. Rev. Econ. Stat., 100(5), 844-860.
[6] Banerjee, S., Carlin, B.P. & Gelfand, A.E.2014. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, Florida: Chapman and Hall/CRC.
[7] Bang, H. & Robins, J.M.2005. Doubly robust estimation in missing data and causal inference models. Biometrics, 61, 962-973. · Zbl 1087.62121
[8] Barkley, B.G., Hudgens, M.G., Clemens, J.D., Ali, M. & Emch, M.E.2017. Causal inference from observational studies with clustered interference. arXiv preprint arXiv:1711.04834.
[9] Bind, M.‐A.2019. Causal modeling in environmental health. Ann. Rev. Public Health, 40, 23-43.
[10] Bindoff, N.L., Stott, P.A., AchutaRao, K.M., Allen, M.R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S. & Mokhov, I.I.2013. Detection and Attribution of Climate Change: From Global to Regional. New York, NY, USA: Cambridge University Press.
[11] Bor, J., Moscoe, E., Mutevedzi, P., Newell, M.‐L. & Bärnighausen, T.2014. Regression discontinuity designs in epidemiology: causal inference without randomized trials. Epidemiology (Cambridge, Mass.), 25(5), 729.
[12] Cao, W., Tsiatis, A.A. & Davidian, M.2009. Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika, 96, 723-734. · Zbl 1170.62007
[13] Cox, D.R.1958. Planning of Experiments. New York, NY, USA: Wiley. · Zbl 0084.15802
[14] Cross, P.C., Prosser, D.J., Ramey, A.M., Hanks, E.M. & Pepin, K.M.2019. Confronting models with data: the challenges of estimating disease spillover. Phil. Trans. R. Soc. B, 374(1782), 20180435.
[15] Davis, M.L., Neelon, B., Nietert, P.J., Hunt, K.J., Burgette, L.F., Lawson, A.B. & Egede, L.E.2019. Addressing geographic confounding through spatial propensity scores: a study of racial disparities in diabetes. Stat. Methods Med. Res., 28(3), 734-748.
[16] Davison, A.C. & Huser, R.2019. Spatial Extremes. Boca Raton, Florida: CRC Press.
[17] Delgado, M.S. & Florax, RJGM2015. Difference‐in‐differences techniques for spatial data: local autocorrelation and spatial interaction. Econ. Lett., 137, 123-126. · Zbl 1398.62230
[18] Diggle, P.J., Menezes, R. & Su, T.2010. Geostatistical inference under preferential sampling. J. R. Stat. Soc.: Ser. C (Appl. Stat.), 59(2), 191-232.
[19] Dupont, E., Wood, S.N. & Augustin, N.2020. Spatial+: a novel approach to spatial confounding. arXiv preprint arXiv:2009.09420. · Zbl 1520.62185
[20] Eichler, M.2012. Causal inference in time series analysis. In Causality: Statistical Perspectives and Applications, 1st edn., Ed. Carlo Berzuini, L.B. (ed.) pp. 326-354. Chichester, UK: Wiley Online Library.
[21] Forastiere, L., Airoldi, E.M. & Mealli, F.2016. Identification and estimation of treatment and interference effects in observational studies on networks. arXiv preprint arXiv:1609.06245.
[22] Forastiere, L., Mealli, F. & Zigler, C.2020. Bipartite interference and air pollution transport: estimating health effects of power plant interventions. Submitted.
[23] Frangakis, C.E. & Rubin, D.B.1999. Addressing complications of intention‐to‐treat analysis in the combined presence of all‐or‐none treatment‐noncompliance and subsequent missing outcomes. Biometrika, 86(2), 365-379. · Zbl 0934.62110
[24] Gelfand, A.E., Diggle, P., Guttorp, P. & Fuentes, M.2010. Handbook of Spatial Statistics. Boca Raton, Florida: CRC Press. · Zbl 1188.62284
[25] Gelfand, A.E., Kim, H.‐J., Sirmans, C.F. & Banerjee, S.2003. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc., 98(462), 387-396. · Zbl 1041.62041
[26] Giffin, A., Reich, B.J., Yang, S. & Rappold, A.G.2020. Generalized propensity score approach to causal inference with spatial interference. arXiv preprint arXiv:2007.00106. · Zbl 1522.62136
[27] Gotway, C.A. & Young, L.J.2002. Combining incompatible spatial data. J. Am. Stat. Assoc., 97(458), 632-648. · Zbl 1073.62604
[28] Granger, C.W.1969. Investigating causal relations by econometric models and cross‐spectral methods. Econometrica: J. Economet. Soc., 37, 424-438. · Zbl 1366.91115
[29] Guan, Y., Page, G.L., Reich, B.J., Ventrucci, M. & Yang, S.2020. A spectral adjustment for spatial confounding. arXiv preprint arXiv:2012.11767.
[30] Guan, Q., Reich, B.J. & Laber, E.B.2020. A spatiotemporal recommendation engine for malaria control. arXiv preprint arXiv:2003.05084.
[31] Halloran, M.E.2012. The minicommunity design to assess indirect effects of vaccination. Epidemiologic Methods, 1(1), 83-105.
[32] Halloran, M.E. & Struchiner, C.J.1991. Study designs for dependent happenings. Epidemiology, 2, 331-338.
[33] Halloran, M.E. & Struchiner, C.J.1995. Causal inference in infectious diseases. Epidemiology, 6, 142-151.
[34] Hanks, E.M., Schliep, E.M., Hooten, M.B. & Hoeting, J.A.2015. Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics, 26(4), 243-254. · Zbl 1525.62132
[35] He, Z.2018. Inverse conditional probability weighting with clustered data in causal inference. arXiv preprint arXiv:1808.01647.
[36] Hegerl, G. & Zwiers, F.2011. Use of models in detection and attribution of climate change. Wiley Interdiscipl. Rev.: Climate Change, 2(4), 570-591.
[37] Hernán, M.A. & Robins, J.M.2020. Causal Inference: What if. Chapman & Hall/CRC: Boca Raton.
[38] Hirano, K. & Imbens, G.W.2004. The propensity score with continuous treatments. Appl. Bayesian Model. Causal Inference Incomplete‐Data Perspect., 22, 73-84. · Zbl 05274806
[39] Hodges, J.S. & Reich, B.J.2010. Adding spatially‐correlated errors can mess up the fixed effect you love. Am. Stat., 64(4), 325-334. · Zbl 1217.62095
[40] Holland, P.W.1986. Statistics and causal inference. J. Am. Stat. Assoc., 81, 945-960. · Zbl 0607.62001
[41] Hudgens, M.G. & Halloran, M.E.2008. Toward causal inference with interference. J. Am. Stat. Assoc., 103, 832-842. · Zbl 1471.62507
[42] Hughes, J. & Haran, M.2013. Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 75(1), 139-159. · Zbl 07555442
[43] Imbens, G.W. & Angrist, J.D.1994. Identification and estimation of local average treatment effects. Econometrica, 62(2), 467-475. · Zbl 0800.90648
[44] Imbens, G.W. & Lemieux, T.2008. Regression discontinuity designs: a guide to practice. J. Economet., 142(2), 615-635. · Zbl 1418.62475
[45] Janes, H., Dominici, F. & Zeger, S.L.2007. Trends in air pollution and mortality: an approach to the assessment of unmeasured confounding. Epidemiology, 18, 416-423.
[46] Jarner, M.F., Diggle, P. & Chetwynd, A.G.2002. Estimation of spatial variation in risk using matched case‐control data. Biometrical J.: J. Math. Methods Biosci., 44(8), 936-945. · Zbl 1441.62386
[47] Keele, L.J. & Titiunik, R.2015. Geographic boundaries as regression discontinuities. Political Anal., 23(1), 127-155.
[48] Keller, J.P. & Szpiro, A.A.2020. Selecting a scale for spatial confounding adjustment. J. R. Stat. Soc.: Ser. A, 183, 1121-1143.
[49] Khan, K. & Calder, C.A.2020. Restricted spatial regression methods: implications for inference. J. Am. Stat. Assoc., 1-13.
[50] Kim, M., Paini, D. & Jurdak, R.2018. Causal inference in disease spread across a heterogeneous social system. arXiv preprint arXiv:1801.08133.
[51] Kim, M., Paini, D. & Jurdak, R.2019. Modeling stochastic processes in disease spread across a heterogeneous social system. Proc. Nat. Acad. Sci., 116(2), 401-406.
[52] Laber, E.B., Meyer, N.J., Reich, B.J., Pacifici, K., Collazo, J.A. & Drake, J.M.2018. Optimal treatment allocations in space and time for on‐line control of an emerging infectious disease. J. R. Stat. Soc.: Ser. C (Appl. Stat.), 67(4), 743-789.
[53] Larsen, A., Yang, S., Reich, B.J. & Rappold, A.G.2020. A spatial causal analysis of wildland fire‐contributed PM2.5 using numerical model output. arXiv preprint arXiv:2003.06037.
[54] Lindgren, F., Rue, H. & Lindström, J.2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc.: Ser. B (Stat. Methodol.), 73(4), 423-498. · Zbl 1274.62360
[55] Liu, L., Hudgens, M.G. & Becker‐Dreps, S.2016. On inverse probability‐weighted estimators in the presence of interference. Biometrika, 103(4), 829-842. · Zbl 1506.62250
[56] Lum, K. & Gelfand, A.E.2012. Spatial quantile multiple regression using the asymmetric laplace process. Bayesian Anal., 7(2), 235-258. · Zbl 1330.62197
[57] Lunn, D., Best, N., Spiegelhalter, D., Graham, G. & Neuenschwander, B.2009. Combining MCMC with ‘sequential’ PKPD modelling. J. Pharmacokinetics Pharmacodyn., 36(1), 19.
[58] McCandless, L.C., Douglas, I.J., Evans, S.J. & Smeeth, L.2010. Cutting feedback in Bayesian regression adjustment for the propensity score. Int. J. Biostat., 6(2), 1-22.
[59] Ogburn, E.L., Sofrygin, O., Diaz, I. & van der Laan, M.J.2020. Causal inference for social network data. arXiv preprint arXiv:1705.08527.
[60] Paciorek, C.J.2010. The importance of scale for spatial‐confounding bias and precision of spatial regression estimators. Stat. Sci., 25(1), 107-125. · Zbl 1328.62596
[61] Page, G.L., Liu, Y., He, Z. & Sun, D.2017. Estimation and prediction in the presence of spatial confounding for spatial linear models. Scandinavian J. Stat., 44(3), 780-797. · Zbl 06774146
[62] Papadogeorgou, G., Choirat, C. & Zigler, C.M.2018. Adjusting for unmeasured spatial confounding with distance adjusted propensity score matching. Biostatistics, 20(2), 256-272.
[63] Papadogeorgou, G., Mealli, F. & Zigler, C.M.2019. Causal inference with interfering units for cluster and population level treatment allocation programs. Biometrics, 75(3), 778-787. · Zbl 1436.62676
[64] Pati, D., Reich, B.J. & Dunson, D.B.2011. Bayesian geostatistical modelling with informative sampling locations. Biometrika, 98(1), 35-48. · Zbl 1214.62029
[65] Perez‐Heydrich, C., Hudgens, M.G., Halloran, M.E., Clemens, J.D., Ali, M. & Emch, M.E.2014. Assessing effects of cholera vaccination in the presence of interference. Biometrics, 70, 731-741. · Zbl 1299.92032
[66] Plumlee, M. & Joseph, V.R.2018. Orthogonal Gaussian process models. Stat. Sin., 28, 601-619. · Zbl 1390.62047
[67] Prates, M.O., Assunção, R.M. & Rodrigues, E.C.2019. Alleviating spatial confounding for areal data problems by displacing the geographical centroids. Bayesian Anal., 14(2), 623-647. · Zbl 1421.62064
[68] Reich, B.J.2012. Spatiotemporal quantile regression for detecting distributional changes in environmental processes. J. R. Stat. Soc.: Ser. C (Appl. Stat.), 61(4), 535-553.
[69] Reich, B.J. & Fuentes, M.2015. Spatial Bayesian nonparametric methods. In Nonparametric Bayesian Inference in Biostatistics. New York: Springer, pp. 347-357. · Zbl 1381.62092
[70] Reich, B.J., Fuentes, M. & Dunson, D.B.2011. Bayesian spatial quantile regression. J. Am. Stat. Assoc., 106(493), 6-20. · Zbl 1396.62263
[71] Reich, B.J., Hodges, J.S. & Zadnik, V.2006. Effects of residual smoothing on the posterior of the fixed effects in disease‐mapping models. Biometrics, 62(4), 1197-1206. · Zbl 1114.62124
[72] Robins, J.M. & Greenland, S.1994. Adjusting for differential rates of prophylaxis therapy for PCP in high‐versus low‐dose AZT treatment arms in an AIDS randomized trial. J. Am. Stat. Assoc., 89, 737-749. · Zbl 0806.92010
[73] Robins, J.M., Rotnitzky, A. & Zhao, L.P.1994. Estimation of regression coefficients when some regressors are not always observed. J. Am. Stat. Assoc., 89, 846-866. · Zbl 0815.62043
[74] Rosenbaum, P.R. & Rubin, D.B.1983. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Stat. Soc. Ser. B., 45, 212-218.
[75] Rosenbaum, P.R. & Rubin, D.B.1983a. The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55. · Zbl 0522.62091
[76] Rubin, D.B.1974. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educational Psychol., 66, 688-701.
[77] Rubin, D.B.1978. Bayesian inference for causal effects: the role of randomization. Ann. Statist., 6, 34-58. · Zbl 0383.62021
[78] Saarela, O., Belzile, L.R. & Stephens, D.A.2016. A Bayesian view of doubly robust causal inference. Biometrika, 103(3), 667-681. · Zbl 1506.62253
[79] Saarela, O., Stephens, D.A., Moodie, E.E.M. & Klein, M.B.2015. On Bayesian estimation of marginal structural models. Biometrics, 71(2), 279-288. · Zbl 1390.62305
[80] Schnell, P. & Papadogeorgou, G.2020. Mitigating unobserved spatial confounding when estimating the effect of supermarket access on cardiovascular disease deaths. Ann. Appl. Stat., 14, 2069-2095. · Zbl 1498.62251
[81] Schutte, S. & Donnay, K.2014. Matched wake analysis: finding causal relationships in spatiotemporal event data. Polit. Geography, 41, 1-10.
[82] Sobel, M.E.2006. What do randomized studies of housing mobility demonstrate? Causal inference in the face of interference. J. Am. Stat. Assoc., 101, 1398-1407. · Zbl 1171.62365
[83] Stuart, E.A.2010. Matching methods for causal inference: a review and a look forward. Stat. Sci., 25, 1-21. · Zbl 1328.62007
[84] Tchetgen Tchetgen, E.J., Fulcher, I. & Shpitser, I.2017. Auto‐g‐computation of causal effects on a network. arXiv preprint arXiv:1709.01577. · Zbl 1464.62212
[85] Tchetgen Tchetgen, E.J. & VanderWeele, T.J.2012. On causal inference in the presence of interference. Stat. Methods Med. Res., 21(1), 55-75.
[86] Thaden, H. & Kneib, T.2018. Structural equation models for dealing with spatial confounding. Am. Statistician, 72(3), 239-252. · Zbl 07663944
[87] VanderWeele, T.J., Tchetgen Tchetgen, E.J. & Halloran, M.E.2014. Interference and sensitivity analysis. Stat. Sci.: A Rev. J. Inst. Math. Stat., 29(4), 687. · Zbl 1331.62443
[88] Verbitsky‐Savitz, N. & Raudenbush, S.W.2012. Causal inference under interference in spatial settings: a case study evaluating community policing program in Chicago. Epidemiologic Methods, 1(1), 107-130.
[89] Wall, M.M.2004. A close look at the spatial structure implied by the CAR and SAR models. J. Stat. Plann. Inference, 121(2), 311-324. · Zbl 1036.62097
[90] White, H. & Lu, X.2010. Granger causality and dynamic structural systems. J. Financial Economet., 8(2), 193-243.
[91] Wu, X., Nethery, R.C., Sabath, B.M., Braun, D. & Dominici, F.2020. Exposure to air pollution and COVID‐19 mortality in the United States. medRxiv.
[92] Wu, L., Yang, S., Reich, B.J. & Rappold, A.G.2020. Estimating spatially varying health effects in app‐based citizen science research. arxiv.org/pdf/2005.12017v2.pdf.
[93] Yang, S.2018. Propensity score weighting for causal inference with clustered data. J. Causal Inference, 6, 1-19. https://doi.org/10.1515/jci-2017-0027 · doi:10.1515/jci-2017-0027
[94] Yang, S. & Ding, P.2018. Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores. Biometrika, 105, 487-493. · Zbl 07072428
[95] Yang, S., Wang, L. & Ding, P.2019. Causal inference with confounders missing not at random. Biometrika, 106, 875-888. · Zbl 1435.62059
[96] Zigler, C.M.2016. The central role of Bayes’ theorem for joint estimation of causal effects and propensity scores. Am. Stat., 70(1), 47-54. · Zbl 07665851
[97] Zigler, C.M., Dominici, F. & Wang, Y.2012. Estimating causal effects of air quality regulations using principal stratification for spatially correlated multivariate intermediate outcomes. Biostatistics, 13, 289-302. · Zbl 1437.62680
[98] Zigler, C.M. & Papadogeorgou, G.2021. Bipartite causal inference with interference. Stat. Sci., 36, 109. · Zbl 07368222
[99] Zigler, C.M., Watts, K., Yeh, R.W., Wang, Y., Coull, B.A. & Dominici, F.2013. Model feedback in Bayesian propensity score estimation. Biometrics, 69(1), 263-273. · Zbl 1272.62107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.