×

Isometric immersions of \({{\mathbb R}^2}\) into \({{\mathbb R}^4}\) and perturbation of Hopf tori. (English) Zbl 1209.53009

The authors construct a large family of new flat tori in \(\mathbb R^4\), which are with flat normal bundle and regular Gauss map. These tori are not contained in any affine 3-sphere and cannot be expressed as the product of two curves.
To do that they first apply the representation formula of Sect. 3 of this paper to obtain a procedure of unfolding a Hopf torus in \(S^3\), so that one gets a flat surface in \(\mathbb R^4\) (possibly with singular points) with flat normal bundle that does not lie in any affine 3-sphere in \(\mathbb R^4\). Then they show that for a certain family of Hopf tori this procedure generates flat tori in \(\mathbb R^4\).

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces

References:

[1] Bianchi L.: Sulle superficie a curvatura nulla in geometria ellittica. Ann. Mat. Pura Appl. 24, 93–129 (1896) · JFM 27.0370.02
[2] Borisenko A.A.: Isometric immersions of space forms in Riemannian and pseudo-Riemannian spaces of constant curvature. Russ. Math. Surv. 56, 425–497 (2001) · Zbl 1038.53062 · doi:10.1070/RM2001v056n03ABEH000393
[3] do Carmo M.P., Dajczer M.: Local isometric immersions of \({{\mathbb R}^2}\) into \({{\mathbb R}^4}\) . J. Reine Angew. Math. 442, 205–219 (1993) · Zbl 0782.53018 · doi:10.1515/crll.1993.442.205
[4] Cheng-Chung H.: A differential-geometric criterion for a space curve to be closed. Proc. Am. Math. Soc. 83, 357–361 (1981) · Zbl 0477.53001 · doi:10.2307/2043528
[5] Chicone C., Kalton N.J.: Flat embeddings of the Möbius strip in \({{\mathbb R}^3}\) . Comm. Appl. Nonlinear Anal. 9, 31–50 (2002) · Zbl 1035.53006
[6] Dajczer M., Tojeiro R.: On flat surfaces in space forms. Houston J. Math. 21, 319–338 (1995) · Zbl 0836.53012
[7] Dajczer M., Tojeiro R.: Submanifolds with nonparallel first normal bundle. Can. Math. Bull. 37, 330–337 (1994) · Zbl 0812.53015 · doi:10.4153/CMB-1994-049-3
[8] Dajczer M., Tojeiro R.: Isometric immersions and the generalized Laplace and elliptic sinh-Gordon equations. J. Reine Angew. Math. 467, 109–147 (1995) · Zbl 0832.53013
[9] Dajczer M., Tojeiro R.: An extension of the classical Ribaucour transformation. Proc. Lond. Math. Soc. 85, 211–232 (2002) · Zbl 1028.53057
[10] Enomoto K.: Global properties of the Gauss image of flat surfaces in R4. Kodai Math. J. 10, 272–284 (1987) · Zbl 0642.53005 · doi:10.2996/kmj/1138037457
[11] Ferus D., Pedit F.: Isometric immersions of space forms and soliton theory. Math. Ann. 305, 329–342 (1996) · Zbl 0866.53046 · doi:10.1007/BF01444224
[12] Gálvez J.A., Martínez A., Milán F.: Flat surfaces in the hyperbolic 3-space. Math. Ann. 316, 419–435 (2000) · Zbl 1003.53047 · doi:10.1007/s002080050337
[13] Gálvez J.A., Mira P.: The Cauchy problem for the Liouville equation and Bryant surfaces. Adv. Math. 195, 456–490 (2005) · Zbl 1083.53010 · doi:10.1016/j.aim.2004.08.007
[14] Gálvez J.A., Mira P.: Embedded isolated singularities of flat surfaces in hyperbolic 3-space. Cal. Var. Partial Diff. Equ. 24, 239–260 (2005) · Zbl 1080.53008 · doi:10.1007/s00526-004-0321-6
[15] Hasanis T., Koutroufiotis D., Pamfilos P.: Surfaces of E4 satisfying certain restrictions on their normal bundle. Trans. Am. Math. Soc. 319, 329–347 (1990) · Zbl 0705.53009 · doi:10.2307/2001348
[16] Hoffman, D., Osserman, R.: The geometry of the generalized Gauss map. Mem. Am. Math. Soc. 28, (1980) · Zbl 0469.53004
[17] Kitagawa Y.: Periodicity of the asymptotic curves on flat tori in S3. J. Math. Soc. Jpn. 40, 457–476 (1988) · Zbl 0642.53059 · doi:10.2969/jmsj/04030457
[18] Kitagawa Y.: Embedded flat tori in the unit 3-sphere. J. Math. Soc. Jpn. 47, 275–296 (1995) · Zbl 0836.53035 · doi:10.2969/jmsj/04720275
[19] Kokubu M., Rossman W., Saji K., Umehara M., Yamada K.: Singularities of flat fronts in hyperbolic 3-space. Pac. J. Math. 221, 303–351 (2005) · Zbl 1110.53044 · doi:10.2140/pjm.2005.221.303
[20] Kokubu M., Umehara M., Yamada K.: Flat fronts in hyperbolic 3-space. Pac. J. Math. 216, 149–175 (2004) · Zbl 1078.53009 · doi:10.2140/pjm.2004.216.149
[21] Pinkall U.: Hopf tori in \({{\mathbb S}^3}\) . Invent. Math. 81, 379–386 (1985) · Zbl 0585.53051 · doi:10.1007/BF01389060
[22] Saji K., Umehara M., Yamada K.: The geometry of fronts. Ann. Math. 169, 491–529 (2009) · Zbl 1177.53014 · doi:10.4007/annals.2009.169.491
[23] Spivak M.: A Comprehensive Introduction to Differential Geometry, vol. IV. Perish, Inc., Boston (1975) · Zbl 0306.53001
[24] Tenenblat K.: Transformation of Manifolds and Applications to Differential Equations. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman, Harlow (1998)
[25] Terng C.L.: Soliton equations and differential geometry. J. Differ. Geom. 45, 407–445 (1997) · Zbl 0877.53022
[26] Umehara M., Yamada K.: A deformation of tori with constant mean curvature in \({{\mathbb R}^3}\) to those in other space forms. Trans. Am. Math. Soc. 330, 845–857 (1992) · Zbl 0753.53040 · doi:10.2307/2153938
[27] Weiner J.L.: Flat tori in \({{\mathbb S}^3}\) and their Gauss maps. Proc. Lond. Math. Soc. 62, 54–76 (1991) · Zbl 0724.53036 · doi:10.1112/plms/s3-62.1.54
[28] Weiner, J.L.: Rigidity of Clifford tori. In: Geometry and Topology of Submanifolds, VII, pp. 274–277. World Scientific Publishing, River Edge (1995)
[29] Weiner, J.L.: Isometric immersions of E 2 into E 4. In: Geometry of Submanifolds and Related Topics (Kyoto, 2001), pp. 136–143. Surikaisekikenkyusho Kokyuroku (2001) · Zbl 0991.53513
[30] Weinstein T.: An Introduction to Lorentz Surfaces. Walter de Gruyter, Berlin (1996) · Zbl 0881.53001
[31] Wunderlich W.: Über ein abwickelbares Möbiusband. Monatsh. Math. 66, 276–289 (1962) · Zbl 0105.14802 · doi:10.1007/BF01299052
[32] Yau S.T.: Submanifolds with constant mean curvature II. Am. J. Math. 96, 76–100 (1975) · Zbl 0304.53042 · doi:10.2307/2373661
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.