×

Ground state solution for a non-autonomous 1-Laplacian problem involving periodic potential in \(\protect \mathbb{R}^N\). (English) Zbl 1490.35170

Summary: In this paper, we consider the following 1-Laplacian problem \[ -\Delta_1 u+V(x)\frac{u}{|u|}= f(x,u),\, x\in \mathbb{R}^N,\, u>0, u\in BV\left(\mathbb{R}^N\right), \] where \(\Delta_1 u=\operatorname{div}(\tfrac{Du}{|Du|})\), \(V\) is a periodic potential and \(f\) is periodic and verifies the super-primary condition at infinity. By the Nehari type manifold method, the concentration compactness principle and some analysis techniques, we show the 1-Laplacian equation has a ground state solution.

MSC:

35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

References:

[1] Alves, Claudianor O., A Berestycki-Lions type result for a class of problems involving the 1-Laplacian operator, Commun. Contemp. Math. (2021) · Zbl 1498.35307 · doi:10.1142/S021919972150022X
[2] Alves, Claudianor O.; Figueiredo, Giovany M.; Pimenta, Marcos T. O., Existence and profile of ground-state solutions to a 1-Laplacian problem in \(\mathbb{R}^N \), Bull. Braz. Math. Soc. (N.S.), 51, 3, 863-886 (2020) · Zbl 1448.35253 · doi:10.1007/s00574-019-00179-4
[3] Anzellotti, Gabriele, The Euler equation for functionals with linear growth, Trans. Am. Math. Soc., 290, 2, 483-501 (1985) · Zbl 0611.49018 · doi:10.2307/2000295
[4] Attouch, Hedy; Buttazzo, Giuseppe; Michaille, Gérard, Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, 17 (2014), Society for Industrial and Applied Mathematics; Mathematical Optimization Society, Philadelphia, PA · Zbl 1311.49001 · doi:10.1137/1.9781611973488
[5] Che, Guofeng; Shi, Hongxia; Wang, Zewei, Existence and concentration of positive ground states for a 1-Laplacian problem in \(\mathbb{R}^N \), Appl. Math. Lett., 100 (2020) · Zbl 1428.35021 · doi:10.1016/j.aml.2019.106045
[6] Figueiredo, Giovany M.; Pimenta, Marcos T. O., Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials, J. Math. Anal. Appl., 459, 2, 861-878 (2018) · Zbl 1382.35114 · doi:10.1016/j.jmaa.2017.11.014
[7] Figueiredo, Giovany M.; Pimenta, Marcos T. O., Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions, NoDEA, Nonlinear Differ. Equ. Appl., 25, 5 (2018) · Zbl 1419.35050 · doi:10.1007/s00030-018-0538-2
[8] Figueiredo, Giovany M.; Pimenta, Marcos T. O., Strauss’ and Lions’ type results in \({BV}(\mathbb{R}^N)\) with an application to an 1-Laplacian problem, Milan J. Math., 86, 1, 15-30 (2018) · Zbl 1394.35205 · doi:10.1007/s00032-018-0277-1
[9] Li, Yongqing; Wang, Zhi-Qiang; Zeng, Jing, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 23, 6, 829-837 (2006) · Zbl 1111.35079 · doi:10.1016/j.anihpc.2006.01.003
[10] Lions, Pierre-Louis, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 2, 109-145 (1984) · Zbl 0541.49009 · doi:10.1016/s0294-1449(16)30428-0
[11] Ortiz Chata, Juan C.; Pimenta, Marcos T. O., A Berestycki-Lions’ type result to a quasilinear elliptic problem involving the 1-Laplacian operator, J. Math. Anal. Appl., 500, 1 (2021) · Zbl 1464.35141 · doi:10.1016/j.jmaa.2021.125074
[12] Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad, Nonlinear total variation based noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[13] Zhou, Fen; Shen, Zifei, Existence of a radial solution to a 1-Laplacian problem in \(\mathbb{R}^N \), Appl. Math. Lett., 118 (2021) · Zbl 1479.35500 · doi:10.1016/j.aml.2021.107138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.