×

A Bernstein type theorem for entire Willmore graphs. (English) Zbl 1269.53010

Let \(\Sigma\) be a closed two-dimensional surface immersed by \(f:\Sigma \rightarrow \mathbb{R}^3\) in the space. The Willmore functional is \[ W(f)=\frac{1}{4}\int_{\Sigma}{H^2\,d{\mu}_g}, \] where \(g\) in the induced metric, \(H\) the mean curvature of \(\Sigma\) and \(d{\mu}_g\) is the area element.
Critical points of \(W\) are called Willmore surfaces and they are solutions of the Willmore equation: \[ {\Delta}_g H+\frac{1}{2} H^3-2HK=0, \] where \({\Delta}_g \) is the Laplace-Beltrami operator and \(K\) the Gauss curvature of \(\Sigma.\)
In this paper, the authors are interested in entire Willmore graphs, i.e. surfaces defined by \( \Sigma=\{(x,u(x)) / x \in \mathbb{R}^2 \}, \) with \(u:\mathbb{R}^2 \rightarrow \mathbb{R}\), and they show the following Bernstein-type theorem: “Every two-dimensional entire graphical solution of the Willmore equation with square integrable second fundamental form is a plane.”

MSC:

53A05 Surfaces in Euclidean and related spaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
35J30 Higher-order elliptic equations
Full Text: DOI

References:

[1] Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984) · Zbl 0555.53002
[2] Colding, T., Minicozzi, W.P. II: Minimal Surfaces. Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York (1999) · Zbl 0987.49025
[3] Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, 21–46 (2006) · Zbl 1102.35047 · doi:10.4171/IFB/134
[4] Deckelnick, K., Grunau, H.-Ch.: Boundary value problems for the one-dimensional Willmore equation. Calc. Var. 30, 293–314 (2007) · Zbl 1127.53002 · doi:10.1007/s00526-007-0089-6
[5] Hartman, P.: Geodesic parallel coordinates in the large. Am. J. Math. 86, 705–727 (1964) · Zbl 0128.16105 · doi:10.2307/2373154
[6] Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982) · Zbl 0584.53021 · doi:10.1007/BF02392726
[7] Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames. Cambridge Tracts in Mathematics, vol. 150. Cambridge University Press, Cambridge (2002) · Zbl 1010.58010
[8] Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57, 409–441 (2001) · Zbl 1035.53092
[9] Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. 160, 315–357 (2004) · Zbl 1078.53007 · doi:10.4007/annals.2004.160.315
[10] Kuwert, E., Schätzle, R.: Branch points of Willmore surfaces. Duke Math. J. 138, 179–201 (2007) · Zbl 1130.53007 · doi:10.1215/S0012-7094-07-13821-3
[11] Lawson, H.B.: Complete minimal surfaces in S 3. Ann. Math. 92, 335–374 (1970) · Zbl 0205.52001 · doi:10.2307/1970625
[12] Li, P., Tam, L.-F.: Complete surfaces with finite total curvature. J. Differ. Geom. 33, 139–168 (1991) · Zbl 0749.53025
[13] Müller, S., Sverak, V.: On surfaces of finite total curvature. J. Differ. Geom. 42, 229–258 (1995)
[14] Osserman, R.: A Survey of Minimal Surfaces. Dover, New York (1986) · Zbl 0209.52901
[15] Rigoli, M.: On a conformal Bernstein type property. Rend. Semin. Mat. Univ. Politec. Torino 44, 427–436 (1986) · Zbl 0667.53011
[16] Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174, 1–45 (2008) · Zbl 1155.53031 · doi:10.1007/s00222-008-0129-7
[17] Semmes, S.: Hypersurfaces in \(\mathbb{R}\) n whose unit normal has small BMO norm. Proc. Am. Math. Soc. 112, 403–412 (1991) · Zbl 0733.42014
[18] Semmes, S.: Chord-arc surfaces with small constant I. Adv. Math. 85, 198–223 (1991) · Zbl 0733.42015 · doi:10.1016/0001-8708(91)90056-D
[19] Semmes, S.: Chord-arc surfaces with small constant II. Good parameterizations. Adv. Math. 88, 170–199 (1991) · Zbl 0733.42016 · doi:10.1016/0001-8708(91)90007-T
[20] Shiohama, K.: Total curvatures and minimal areas of complete surfaces. Proc. Am. Math. Soc. 94, 310–316 (1985) · Zbl 0582.53036
[21] Toro, T.: Surfaces with generalized second fundamental form in L 2 are Lipschitz manifolds. J. Differ. Geom. 39, 65–101 (1994) · Zbl 0806.53020
[22] Toro, T.: Geometric conditions and existence of bi-Lipschitz parametrizations. Duke Math. J. 77, 193–227 (1995) · Zbl 0847.42011 · doi:10.1215/S0012-7094-95-07708-4
[23] Trudinger, N., Wang, X.-J.: The Bernstein problem for affine maximal hypersurfaces. Invent. Math. 140, 399–422 (2000) · Zbl 0978.53021 · doi:10.1007/s002220000059
[24] White, B.: Complete surfaces of finite total curvature. J. Differ. Geom. 26, 315–326 (1987) · Zbl 0631.53007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.