×

\(H^{1}\)-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations. (English) Zbl 1270.65077

The authors study the \( H^{1}\)-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations. In particular, they extend the \( H^{1}\)-Galerkin expanded mixed finite element method developed by H.-Z. Chen and H. Wang [Numer. Methods Partial Differ. Equations 26, No. 1, 188–205 (2010; Zbl 1425.65094)] to nonlinear pseudo-parabolic integro-differential equations. They present the theoretical analysis to study the existence and uniqueness of numerical solutions of the scheme and obtain an optimal-order error estimate. Numerical examples are given to illustrate the effectiveness of the method presented.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
45G10 Other nonlinear integral equations

Citations:

Zbl 1425.65094
Full Text: DOI

References:

[1] G. I.Barenblatt, I. P.Zheltov, and I. N.Kochina, Basic concepts in the theory of seepage of homogenous liquids in fissured rocks, J Appl Math Mech24 ( 1960), 1286-1303. · Zbl 0104.21702
[2] P. J.Chen and M. E.Gurtin, On a theory of heat conduction involving two temperatures, Z Angew Math Phys19 ( 1968), 614-627. · Zbl 0159.15103
[3] S.Cui, Global solutions for a class of nonlinear Integro‐differential equations, Acta Math Appl Sin16 ( 1993), 191-200. · Zbl 0776.45006
[4] S.Wang, On the initial boundary value problem and initial value problem for the semilinear Pseuo‐hyperbolic Integro‐differential equation, Acta Math Appl Sin18 ( 1995), 567-578. · Zbl 0862.45010
[5] X.Cui, Sobolev‐Volterra projection and numerical analysis of finite element methods for Integro‐differential equations, Acta Math Appl Sin24 ( 2001), 442-455. · Zbl 0991.65149
[6] H.Che, Error estimates for mixed finite element methods for pseudo‐parabolic Integro‐differential equations, Chin J Eng Math26 ( 2009), 1033-1038.
[7] R. E.Ewing, Time‐stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J Numer Anal15 ( 1978), 1125-1150. · Zbl 0399.65083
[8] J.Douglas, T.Dupont, and M.Wheeler, H^1‐Galerkin methods for the Laplace and heat equations, Mathematical aspect of finite elements in partial differential equations, Academic Press, New York, 1974, pp. 383-415.
[9] A. K.Pani and P. C.Das, An H^1‐Galerkin method for quasilinear parabolic differential equations, 1986, pp. 357-370. · Zbl 0608.65071
[10] A. K.Pani, An H^1‐Galerkin mixed finite element method for parabolic differential equations, SIAM J Numer Anal35 ( 1998), 712-727. · Zbl 0915.65107
[11] B.Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, Wiley, London, 1965, pp. 145-197.
[12] K.Hellan, An analysis of elastic plates in flexure by a simplified finite element method, Acta Polytech Scand Ci Ser46 ( 1967), 21-28.
[13] L.Herrmann, Finite element bending analysis for plates, J Eng Mech Div ASCE EM593 ( 1967), 13-26.
[14] J.Douglas, R.Ewing, and M.Wheeler, A time‐discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal Numer17 ( 1983), 249-265. · Zbl 0526.76094
[15] J.Douglas, R.Ewing, and M.Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal Numer17 ( 1983), 17-33. · Zbl 0516.76094
[16] A. K.Pani and G.Fairweather, H^1‐Galerkin mixed finite element methods for parabolic partial integro‐differential equations, IMA J Numer Anal22 ( 2002), 231-252. · Zbl 1008.65101
[17] Z.Zhou, An H^1‐Galerkin mixed finite element method for a class of heat transport equations, Appl Math Model34 ( 2010), 2414-2425. · Zbl 1195.65136
[18] Y.Liu and H.Li, H^1‐Galerkin mixed finite element methods for pseudo‐hyperbolic equations, Appl Math Comput212 ( 2009), 446-457. · Zbl 1178.65119
[19] L.Guo and H.Chen, H^1‐Galerkin mixed finite element method for the Sobolev equation, J Syst Sci Math Sci3 ( 2006), 301-314. · Zbl 1115.65363
[20] A. K.Pani, R. K.Sinha, and A. K.Otta, An H^1‐Galerkin mixed finite element method for second order hyperbolic equations, Int J Numer Anal Mode2 ( 2004), 111-129. · Zbl 1082.65100
[21] H.Chen and H.Wang, An optimal‐order error estimate on an H^1‐Galerkin for a nonlinear parabolic equation in porous medium flow, Numer Meth Part Diff Equat26 ( 2010), 188-205. · Zbl 1425.65094
[22] Z.Chen, Expanded mixed finite element methods for linear second‐order elliptic problems, RAIRO Math Model Numer Anal32 ( 1998), 479-499. · Zbl 0910.65079
[23] F.Brezzi and M.Fortin, Mixed and hybrid finite element methods, Springer‐Verlag, New York, 1991. · Zbl 0788.73002
[24] S. C.Brenner and L. R.Scott, The mathematical theory of of finite element methods, Springer‐Verlag, New York, 1991.
[25] P. G.Ciarlet, The finite element method for elliptic problems, North‐Holland, Amsterdam, 1978. · Zbl 0383.65058
[26] F.Breezi, On the existence, uniqueness and approximation of saddle‐point problems arising from Lagrangian multipliers, RAIRO Anal Numer8 ( 1974), 129-151. · Zbl 0338.90047
[27] J.Douglas, Superconvergence in the pressure in the simulation of miscible displacement, SIAM J Numer Anal22 ( 1985), 962-969. · Zbl 0624.65124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.