×

A fractional-order epidemic model with time-delay and nonlinear incidence rate. (English) Zbl 1448.34148

Summary: In this paper, we provide an epidemic SIR model with long-range temporal memory. The model is governed by delay differential equations with fractional-order. We assume that the susceptible is obeying the logistic form in which the incidence term is of saturated form with the susceptible. Several theoretical results related to the existence of steady states and the asymptotic stability of the steady states are discussed. We use a suitable Lyapunov functional to formulate a new set of sufficient conditions that guarantee the global stability of the steady states. The occurrence of Hopf bifurcation is captured when the time-delay \(\tau\) passes through a critical value \(\tau*\). Theoretical results are validated numerically by solving the governing system, using the modified Adams-Bashforth-Moulton predictor-corrector scheme. Our findings show that the combination of fractional-order derivative and time-delay in the model improves the dynamics and increases complexity of the model. In some cases, the phase portrait gets stretched as the order of the derivative is reduced.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K20 Stability theory of functional-differential equations
34K18 Bifurcation theory of functional-differential equations
34K25 Asymptotic theory of functional-differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
34K13 Periodic solutions to functional-differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations

Software:

DDE-BIFTOOL
Full Text: DOI

References:

[1] Abdeljawad, T.; Al-Mdallal, Q. M., Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality, J Comput Appl Math, 339, 218-230 (2018) · Zbl 1472.39006
[2] Abdeljawad, T.; Al-Mdallal, Q. M.; Jarad, F., Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solit Fract, 119, 94-101 (2019) · Zbl 1448.34006
[3] Ahmed, E.; Hashish, A.; Rihan, F. A., On fractional order cancer model, Fract Calcul Appl Anal, 3, 1-6 (2012) · Zbl 1488.34261
[4] Al-Mdallal, Q. M., On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems, Chaos Solit Fract, 116, 261-267 (2018) · Zbl 1442.34055
[5] Al-Mdallal, Q. M.; Hajji, M. A., A convergent algorithm for solving higher-order nonlinear fractional boundary value problems, Fract Calcul Appl Anal, 18, 6, 1423-1440 (2015) · Zbl 1333.65081
[6] Al-Mdallal, Q.; Abro, K. A.; Khan, I., Analytical solutions of fractional Walters b fluid with applications, Complexity, 2018 (2018) · Zbl 1398.76211
[7] Al-Mdallal, Q. M.; Hajji, M. A., A convergent algorithm for solving higher-order nonlinear fractional boundary value problems, Fract Calcul Appl Anal, 18, 6, 1423-1440 (2015) · Zbl 1333.65081
[8] Al-Mdallal, Q. M.; Omer, A. S.A., Fractional-order legendre-collocation method for solving fractional initial value problems, Appl Math Comput, 321, 74-84 (2018) · Zbl 1426.65110
[9] Al-Mdallal, Q. M.; Syam, M. I., An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order, Commun Nonlinear Sci Numer Simul, 17, 6, 2299-2308 (2012) · Zbl 1259.34008
[10] Al-Sulami, H.; El-Shahed, M.; Nieto, J. J.; Shammak, W., On fractional order dengue epidemic model, Math Probl Eng (2014) · Zbl 1407.92122
[11] Aman, S.; Al-Mdallal, Q.; Khan, I., Heat transfer and second order slip effect on MHD flow of fractional maxwell fluid in a porous medium, J King Saud Univ Sci (2018)
[12] Atangana, A.; Alkahtani, B. S.T., Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17, 6, 4439-4453 (2015) · Zbl 1338.35458
[13] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solit Fract, 89, 447-454 (2016) · Zbl 1360.34150
[14] Atangana, A.; Nieto, J. J., Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv Mech Eng, 7, 10 (2015)
[15] Bai, J.; Wen, G.; Rahmani, A.; Yu, Y., Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay, Int J Syst Sci, 46, 13, 2380-2392 (2015) · Zbl 1332.93008
[16] Baleanu, D.; Maaraba, T.; Jarad, F., Fractional variational principles with delay, J Phys A Math Theor, 41, 31, 315403 (2008) · Zbl 1141.49321
[17] Baskonus, H. M.; Mekkaoui, T.; Hammouch, Z.; Bulut, H., Active control of a chaotic fractional order economic system, Entropy, 17, 8, 5771-5783 (2015)
[18] Beretta, E.; Hara, T.; Ma, W.; Takeuchi, Y., Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal, 47, 4107-4115 (2001) · Zbl 1042.34585
[19] Bozkurt, F.; Abdeljawad, T.; Hajji, M. A., Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density, Appl Comput Math, 14, 1, 50-62 (2015) · Zbl 1344.34056
[20] Chinnathambi, R.; Rihan, F. A.; Alsakaji, H. J., A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections, Math Meth Appl Sci., 1-15 (2019)
[21] Deng, W.; Li, C.; Lu, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn, 48, 409-416 (2007) · Zbl 1185.34115
[22] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3-22 (2002) · Zbl 1009.65049
[23] El-Sayed, A. M.; El-Mesiry, A. E.; El-Saka, H. A., On the fractional-order logistic equation, Appl Math Lett, 20, 7, 817-823 (2007) · Zbl 1140.34302
[24] El-Shahed, M.; Alsaedi, A., The fractional SIRC model and influenza a, Math Probl Eng, 3, 378-387 (2011) · Zbl 1235.92033
[25] Engelborghs, K.; Luzyanina, T.; Samaey, G., DDE-BIFTOOL V. 2.00: a matlab package for bifurcation analysis of delay differential equations (2001), Department of Computer ScienceK.U.Leuven: Department of Computer ScienceK.U.Leuven Leuven, Belgium
[26] Ferdri, Y., Some applications of fractional order calculus to design digital filters for biomedical signal processing, J Mech Med Biol, 12, 2, 13 (2012)
[27] Grahovac, N. M.; Zigic, M. M., Modelling of the hamstring muscle group by use of fractional derivatives, Comput Math Appl, 59, 1695-1700 (2010) · Zbl 1189.35341
[28] Hale, J. K.; Lunel, S. M.V., Introduction to functional differential equations (1993), Springer- Verlag: Springer- Verlag New York · Zbl 0787.34002
[29] Hethcote, H. W.; Driessche, P. V.d., An SIS epidemic model with variable population size and a delay, J Math Biol, 34, 177-194 (1995) · Zbl 0836.92022
[30] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific · Zbl 0998.26002
[31] Javidi, M.; Nyamoradi, N., Dynamic analysis of a fractional order prey-predator interaction with harvesting, Appl Math Model, 37, 8946-8956 (2013) · Zbl 1438.92066
[32] Keeling, M. J.; Rohani, P., Modeling infectious diseases (2008), Princeton University Press publisher: Princeton University Press publisher New Jersey USA · Zbl 1279.92038
[33] Latha, V. P.; Rihan, F. A.; Rakkiyappan, R.; Velmurugan, G., A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks, J Comput Appl Math, 339, 134-146 (2018) · Zbl 1390.34231
[34] Li, H. L.; Zhang, L.; Hu, C.; Jiang, Y. L.; Teng, Z., Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, Appl Math Comput, 54, 435-449 (2017) · Zbl 1377.34062
[35] Maraaba, T.; Baleanu, D.; Jarad, F., Existence and uniqueness theorem for a class of delay differential equations with left and right caput fractional derivatives, J Math Phys, 49, 8, 083507 (2008) · Zbl 1152.81550
[36] Maraaba, T. A.; Jarad, F.; Baleanu, D., On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives, Sci China Ser A Math, 51, 10, 1775-1786 (2008) · Zbl 1179.26024
[37] ÖZalp, N.; Demirci, E., A fractional order SEIR model with vertical transmission, Math Comput Modell, 54, 1-6 (2011) · Zbl 1225.34011
[38] Podlubny, I., Fractional differential equations (1999), Academic Press · Zbl 0918.34010
[39] Rajivganthi, C.; Rihan, F. A., Stability of fractional-order preypredator system with time-delay and Monod-Haldane functional response, Nonlinear Dyn, 1-12 (2018)
[40] Rihan, F. A., Numerical modeling of fractional-order biological systems, Abst Appl Anal, 2013, 11 (2013) · Zbl 1470.65131
[41] Rihan, F. A.; Anwar, M. N., Qualitative analysis of delayed sir epidemic model with a saturated incidence rate, Int J Differ Equ, 2012, 13 (2012) · Zbl 1269.34088
[42] Rihan, F. A.; Baleanu, D.; Lakshmanan, S.; Rakkiyappan, R., On fractional SIRC model with salmonella bacterial infection, Abst Appl Anal, 2014, 9 (2014) · Zbl 1406.92615
[43] Rihan, F. A.; Lakshmanan, S.; Hashish, A.; Rakkiyappan, R.; Ahmed, E., Fractional order delayed predator-prey systems with holling type-II functional response, Nonlinear Dyn, 80, 1, 777-789 (2015) · Zbl 1345.92123
[44] Rihan, F. A.; Sheek-Hussein, M.; Tridane, A.; Yafia, R., Dynamics of hepatitis c virus infection: mathematical modeling and parameter estimation, Math Model Nat Phenom, 12, 5, 33-47 (2017) · Zbl 1385.34037
[45] Song, X.; Cheng, S., A delay differential equation model of HIV infection of CD \(4{}^+\) t -cells, J Korean Math Soci, 42, 5, 1071-1086 (2005) · Zbl 1078.92042
[46] Takeuchi, Y.; Ma, W.; Beretta, E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal Theory Methods Appl, 42, 931-947 (2000) · Zbl 0967.34070
[47] Wang, X.; Wang, Z.; Huang, X.; Li, Y., Dynamic analysis of a delayed fractional-order sir model with saturated incidence and treatment functions, Int J Bifurcat Chaos, 28, 14, 1850180 (2018) · Zbl 1412.34231
[48] Xu, H., Analytical approximations for a population growth model with fractional order, Commun Nonlinear Sci Numer Simul, 14, 1978-1983 (2009) · Zbl 1221.65210
[49] Zeb, A.; Bano, A.; Alzahrani, E.; Zaman, G., Dynamical analysis of cigarette smoking model with a saturated incidence rate, AIP Adv, 8, 4, 045317 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.