×

A fractional-order predator-prey model with Beddington-DeAngelis functional response and time-delay. (English) Zbl 1415.34127

Summary: We propose a fractional-order prey-predator dynamical system with Beddington-DeAngelis type functional response and time-delay. We study the existence of various equilibrium points, and sufficient conditions that ensure the local asymptotic stability of the steady states of such system. The system shows a Hopf-bifurcation which depends on the time-delay. The presence of fractional-order and time-delay in the differential model improves the stability of the solutions and enriches the dynamics of the model. Some numerical examples and simulations are provided to validate the derived theoretical results.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K21 Stationary solutions of functional-differential equations
34K20 Stability theory of functional-differential equations
34K18 Bifurcation theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations
34K37 Functional-differential equations with fractional derivatives
Full Text: DOI

References:

[1] Liu, Z., and R. Tan. 2007. Impulsive harvesting and stocking in a monod-haldane functional response predator-prey system. Chaos, Solitons and Fractals 34: 454-464. · Zbl 1127.92045 · doi:10.1016/j.chaos.2006.03.054
[2] Li, S., and W. Liu. 2016. A delayed holling type iii functional response predator-prey system with impulsive perturbation on the prey. Advances in Difference Equations 2016: 42. · Zbl 1418.92108 · doi:10.1186/s13662-016-0768-8
[3] Tang, G., S. Tang, and R.A. Cheke. 2014. Global analysis of a holling type ii predator-prey model with a constant prey refuge. Nonlinear Dynamics 76: 635-647. · Zbl 1319.92051 · doi:10.1007/s11071-013-1157-4
[4] Rihan, F.A., S. Lakshmanan, A.H. Hashish, R. Rakkiyappan, and E. Ahmed. 2015. Fractional-order delayed predator-prey systems with holling type-ii functional response. Nonlinear Dynamics 80: 777-789. · Zbl 1345.92123 · doi:10.1007/s11071-015-1905-8
[5] Xu, C., and Y. Wu. 2015. Bifurcation and control of chaos in a chemical system. Applied Mathematical Modelling 39: 2295-2310. · Zbl 1443.92206 · doi:10.1016/j.apm.2014.10.030
[6] Xu, C., X. Tang, and M. Liao. 2010. Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments. Applied Mathematics and Computation 216: 2920-2936. · Zbl 1191.92077 · doi:10.1016/j.amc.2010.04.004
[7] Wang, W., and L. Chen. 1997. A predator – prey system with stage-structure for predator. Computers and Mathematics with Applications 33: 83-91. · doi:10.1016/S0898-1221(97)00056-4
[8] Nosrati, K., and M. Shafiee. 2017. Dynamic analysis of fractional-order singular holling type-ii predator-prey system. Applied Mathematics and Computation 313: 159-179. · Zbl 1426.92059 · doi:10.1016/j.amc.2017.05.067
[9] Ghaziani, R.K., and J. Alidousti. 2016. Stability analysis of a fractional order prey-predator system with nonmonotonic functional response. Computational Methods for Differential Equations 4: 151-161. · Zbl 1438.92063
[10] Xu, C., and P. Li. 2015. Oscillations for a delayed predator-prey model with Hassell-Varley-type functional response. Comptes Rendus Biologies 338: 227-240. · doi:10.1016/j.crvi.2015.01.002
[11] Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91: 293-320. · doi:10.4039/Ent91293-5
[12] Xu, C., X. Tang, M. Liao, and X. He. 2011. Bifurcation analysis in a delayed Lokta-Volterra predator-prey model with two delays. Nonlinear Dynamics 66: 169-183. · Zbl 1297.37044 · doi:10.1007/s11071-010-9919-8
[13] Xia, J., Z. Liu, R. Yuan, and A. Ruan. 2009. The effects of harvesting and time delay on predator-prey systems with holling type ii functional response. SIAM Journal of Applied Mathematics 70: 1178-1200. · Zbl 1203.34137 · doi:10.1137/080728512
[14] Khajanchi, S. 2017. Modeling the dynamics of stage-structure predator-prey system with monod-haldane type response function. Applied Mathematics and Computation 302: 122-143. · Zbl 1411.34101 · doi:10.1016/j.amc.2017.01.019
[15] Beddington, J.R. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. Journal of Animal Ecology 44: 331-340. · doi:10.2307/3866
[16] DeAngelis, D.L., R.A. Goldstein, and R.V. O’Neill. 1975. A model for tropic interaction. Ecology 56: 881-892. · doi:10.2307/1936298
[17] Shulin, S., and G. Cuihua. 2013. Dynamics of a beddington-deangelis type predator-prey model with impulsive effect. Journal of Mathematics 2013: 826857. · Zbl 1486.34109 · doi:10.1155/2013/826857
[18] Kilbas, A. A., H. M. Srivastava, & J. J. Trujillo. 2006 . Theory and applications of fractional differential equations. In North-Holland Mathematics Studies, 204. Amsterdam: Elsevier Science B.V · Zbl 1092.45003
[19] Podlubny, I. 1999. Fractional differential equations. USA: Academic. · Zbl 0924.34008
[20] Li, H.L., L. Zhang, C. Hu, Y.L. Jiang, and Z. Teng. 2017. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. Journal of Applied Mathematics and Computing 54: 435-449. · Zbl 1377.34062 · doi:10.1007/s12190-016-1017-8
[21] Rihan, F.A. 2013. Numerical modeling of fractional-order biological systems. Abstract and Applied Analysis 2013: 816803. · Zbl 1470.65131 · doi:10.1155/2013/816803
[22] Huang, C., J. Cao, M. Xiao, A. Alsaedi, and F.E. Alsaadi. 2017. Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Applied Mathematics and Computation 293: 293-310. · Zbl 1411.37068 · doi:10.1016/j.amc.2016.08.033
[23] Latha, V.P., F.A. Rihan, R. Rakkiyappan, and G. Velmurugan. 2017. A fractional-order delay differential model for ebola infection and \[cd8^+ t\] cd8+t-cells response: Stability analysis and hopf bifurcation. International Journal of Biomathematics 10: 1750111. · Zbl 1376.92031 · doi:10.1142/S179352451750111X
[24] Khajanchi, S. 2014. Dynamic behavior of a beddington-deangelis type stage structured predator-prey model. Applied Mathematics and Computation 244: 344-360. · Zbl 1335.92080 · doi:10.1016/j.amc.2014.06.109
[25] Odibat, Z.M., and N.T. Shawagfeh. 2007. Generalized taylors formula. Applied Mathematics and Computation 186: 286-293. · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[26] Atangana, A. 2015. Derivative with a new parameter: Theory, Methods and Applications. Academic Press. · Zbl 1342.26020
[27] Boukhouima, A., K. Hattaf, and N. Yousfi. 2017. Dynamics of a fractional order hiv infection model with specific functional response and cure rate. International Journal of Differential Equations 2017: 8372140. · Zbl 1487.92009 · doi:10.1155/2017/8372140
[28] Xu, C., X. Tang, and M. Liao. 2011. Stability and bifurcation analysis of a six-neuron bam neural network model with discrete delays. Neurocomputing 74: 689-707. · doi:10.1016/j.neucom.2010.09.002
[29] Hale, J.K. 1977. The theory of functional differential equations. USA: Springer. · Zbl 0352.34001 · doi:10.1007/978-1-4612-9892-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.