×

Border-collision bifurcation in the logistic map with state-dependent impulsive forces. (English) Zbl 07920718

This paper aims to investigate the complex behavior of the logistic map, which experiences impulsive perturbations dependent on its state. The conditions of stability and border-collision bifurcation (BCB) of periodic orbits are presented. The main contributions of this paper are as follows: (1) The mathematical model of the logistic map involving impulsive forces is presented; (2) The BCB of periodic orbits is examined by creating the two-parameter bifurcation diagrams of the map; (3) Several bifurcation scenarios related to the existence of BCB are demonstrated.
The system model consider the logistic map written as the difference equation \[ x(k+1)=rx(k)(1-x(k)), \] where \(x(k)\in [0,1] (k=0,1,2,\dots)\) denotes the system state and \(r\) is a system parameter. Assuming that the logistic equation is perturbed by an impulsive force when its state \(x\) is less than the fixed value \(h\), one can express the resulting difference equation as \[ \begin{cases} x(k+1)= r x(k)(1-x(k)) \quad x(k)>h,\\ x(k+1) = x(k) +\alpha \quad x(k)\leq h, \end{cases} \] where \(0 < h < 1\) and \(0 < \alpha < 1- h\) determine the strength of the impulsive force.

MSC:

39A28 Bifurcation theory for difference equations
39A30 Stability theory for difference equations
39A23 Periodic solutions of difference equations
Full Text: DOI

References:

[1] V. Avrutin, L. Gardini, M. Schanz and I. Sushko, Bifurcations of chaotic attractors in one-dimensional piecewise smooth maps, Int. J. Bifurc. Chaos, 24 (2014), 1440012. doi: 10.1142/S0218127414400124. · Zbl 1300.34085 · doi:10.1142/S0218127414400124
[2] V. Avrutin, L. Gardini, I. Sushko and F. Tramontana, Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures, World Scientific, Singapore, 2019. doi: 10.1142/8285. · Zbl 1452.37002 · doi:10.1142/8285
[3] H. Bao, Z. Hua, H. Li, M. Chen and B. Bao, Memristor-based hyperchaotic maps and application in auxiliary classifier generative adversarial nets, IEEE Trans. Ind. Inf., 18 (2022), 5297-5306. doi: 10.1109/TII.2021.3119387. · doi:10.1109/TII.2021.3119387
[4] H. Bao, H. Li, Z. Hua, Q. Xu and B. Bao, Sine-transform-based memristive hyperchaotic model with hardware implementation, IEEE Trans. Ind. Inf., 19 (2023), 2792-2801. doi: 10.1109/TII.2022.3157296. · doi:10.1109/TII.2022.3157296
[5] M. A. Bayrak and A. Demir, On the challenge of identifying space dependent coefficient in space-time fractional diffusion equations by fractional scaling transformations method, Turkish J. Science, 7 (2022), 132-145. https://dergipark.org.tr/tr/pub/tjos/issue/72750/1129744
[6] G. I. Bischi, L. Gardini and U. Merlone, Impulsivity in binary choices and the emergence of periodicity, Discrete Dyn. Nat. Soc., 2009 (2009), 407913. doi: 10.1155/2009/407913. · Zbl 1178.37129 · doi:10.1155/2009/407913
[7] G. I. Bischi, F. Lamantia and F. Tramontana, Sliding and oscillations in fisheries with on-off harvesting and different switching times, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 216-229. doi: 10.1016/j.cnsns.2013.05.023. · Zbl 1344.91011 · doi:10.1016/j.cnsns.2013.05.023
[8] M. I. Feigin, Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems, J. Appl. Math. Mech., 34 (1970), 822-830. doi: 10.1016/0021-8928(70)90064-X. · Zbl 0224.34021 · doi:10.1016/0021-8928(70)90064-X
[9] J. A. C. Gallas, The role of codimension in dynamical systems, Int. J. Mod. Phys. C, 3 (1992), 1295-1321. doi: 10.1142/S0129183192000890. · Zbl 0940.37501 · doi:10.1142/S0129183192000890
[10] S. Gao and L. Chen, Dynamic complexities in a single-species discrete population model with stage structure and birth pulses, Chaos Solit. Fract., 23 (2005), 519-527. doi: 10.1016/j.chaos.2004.05.047. · Zbl 1066.92041 · doi:10.1016/j.chaos.2004.05.047
[11] L. Gardini, V. Avrutin and I. Sushko, Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps, Int. J. Bifurc. Chaos, 24 (2014), 1450024. doi: 10.1142/S0218127414500242. · Zbl 1287.37023 · doi:10.1142/S0218127414500242
[12] E. G. Gu, Multistability regions and related basins of multiattractors in piecewise linear discontinuous map from financial markets, Int. J. Bifurc. Chaos, 31 (2021), 2150107. doi: 10.1142/S0218127421501078. · Zbl 1473.37110 · doi:10.1142/S0218127421501078
[13] D. Ito, T. Ueta, T. Kousaka and K. Aihara, Bifurcation analysis of the Nagumo-Sato model and its coupled systems, Int. J. Bifurc. Chaos, 26 (2016), 1630006. doi: 10.1142/S0218127416300068. · Zbl 1336.37042 · doi:10.1142/S0218127416300068
[14] H. Jiang, T. Li, X. Zeng and L. Zhang, Bifurcation analysis of complex behavior in the Logistic map via periodic impulsive force, Acta Phys. Sin., 62 (2013), 120508. (in Chinese). doi: 10.7498/aps.62.120508. · doi:10.7498/aps.62.120508
[15] H. Jiang, T. Li, X. Zeng and L. Zhang, Bifurcation analysis of the Logistic map via two periodic impulsive forces, Chin. Phys. B, 23 (2014), 010501. doi: 10.1088/1674-1056/23/1/010501. · doi:10.1088/1674-1056/23/1/010501
[16] I. U. Khan and S. Tang, The impulsive model with pest density and its change rate dependent feedback control, Discrete Dyn. Nat. Soc., 2020 (2020), 4561241. doi: 10.1155/2020/4561241. · Zbl 1459.92156 · doi:10.1155/2020/4561241
[17] K. Li, H. Bao, H. Li, J. Ma, Z. Hua and B. Bao, Memristive Rulkov neuron model with magnetic induction effects, IEEE Trans. Ind. Inf., 18 (2022), 1726-1736. doi: 10.1109/TII.2021.3086819. · doi:10.1109/TII.2021.3086819
[18] C. Li, C. Yi, Y. Li, S. Mitro and Z. Wang, Offset boosting in a discrete system, Chaos, 34 (2024), 031102. doi: 10.1063/5.0199236. · doi:10.1063/5.0199236
[19] F. Liu, Z. Guan and H. Wang, Controlling bifurcations and chaos in TCP-UDP-RED, Nonlinear Anal. Real World Appl., 11 (2010), 1491-1501. doi: 10.1016/j.nonrwa.2009.03.005. · Zbl 1188.93049 · doi:10.1016/j.nonrwa.2009.03.005
[20] R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. doi: 10.1038/261459a0. · Zbl 1369.37088 · doi:10.1038/261459a0
[21] S. S. Muni and S. Banerjee, Bifurcations of mode-locked periodic orbits in three-dimensional maps, Int. J. Bifurc. Chaos, 33 (2023), 2330025. doi: 10.1142/S0218127423300252. · Zbl 07848249 · doi:10.1142/S0218127423300252
[22] T. Nagatani and N. Sugiyama, Vehicular traffic flow through a series of signals with cycle time generated by a logistic map, Phys. A, 392 (2013), 851-856. doi: 10.1016/j.physa.2012.10.015. · doi:10.1016/j.physa.2012.10.015
[23] H. E. Nusse and J. A. Yorke, Border-collision bifurcations including period two to period three for piecewise smooth systems, Phys. D, 57 (1992), 39-57. doi: 10.1016/0167-2789(92)90087-4. · Zbl 0760.58031 · doi:10.1016/0167-2789(92)90087-4
[24] A. Panchuk, I. Sushko, E. Michetti and R. Coppier, Revealing bifurcation mechanisms in a 2D nonsmooth map by means of the first return map, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106946. doi: 10.1016/j.cnsns.2022.106946. · Zbl 1509.37054 · doi:10.1016/j.cnsns.2022.106946
[25] M. Patra, S. Gupta and S. Banerjee, Local and global bifurcations in 3D piecewise smooth discontinuous maps, Chaos, 31 (2021), 013126. doi: 10.1063/5.0010887. · Zbl 1467.37049 · doi:10.1063/5.0010887
[26] X. Rao, X. Zhao, Y. Chu, J. Zhang and J. Gao, The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees, Chaos Solit. Fract., 139 (2020), 110031. doi: 10.1016/j.chaos.2020.110031. · Zbl 1490.92113 · doi:10.1016/j.chaos.2020.110031
[27] D. J. W. Simpson, Unfolding codimension-two subsumed homoclinic connections in two-dimensional piecewise-linear maps, Int. J. Bifurc. Chaos, 30 (2020), 2030006. doi: 10.1142/S0218127420300062. · Zbl 1441.37056 · doi:10.1142/S0218127420300062
[28] I. Sushko, A. Agliari and L. Gardini, Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves, Chaos Solit. Fract., 29 (2006), 756-770. doi: 10.1016/j.chaos.2005.08.107. · Zbl 1142.37339 · doi:10.1016/j.chaos.2005.08.107
[29] I. Sushko, L. Gardini and K. Matsuyama, Superstable credit cycles and U-sequence, Chaos Solit. Fract., 59 (2014), 13-27. doi: 10.1016/j.chaos.2013.11.006. · Zbl 1348.91210 · doi:10.1016/j.chaos.2013.11.006
[30] A. A. Tunik, O. A. Sushchenko, S. I. Ilnytska and V. M. Kondratiuk, Determination of the quadrotor mathematical models for control systems synthesis and simulation, Appl. Comput. Math., 22 (2023), 116-132. doi: 10.30546/1683-6154.22.1.2023.116. · Zbl 1530.93353 · doi:10.30546/1683-6154.22.1.2023.116
[31] X. Wang, N. Guan and J. Yang, Image encryption algorithm with random scrambling based on one-dimensional logistic self-embedding chaotic map, Chaos Solit. Fract., 150 (2021), 111117. doi: 10.1016/j.chaos.2021.111117. · doi:10.1016/j.chaos.2021.111117
[32] T. Yang, Impulsive Control Theory, Springer, Berlin, 2001. · Zbl 0996.93003
[33] J. Yu, H. Jiang, C. Zhou and L. Zhang, Delay-dependent exponential stabilization of nonlinear fuzzy impulsive systems with time-varying delay, Neurocomputing, 203 (2016), 92-101. doi: 10.1016/j.neucom.2016.03.059. · doi:10.1016/j.neucom.2016.03.059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.