×

Competing risks analysis for discrete time-to-event data. (English) Zbl 07910755


MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

DeepHit

References:

[1] Allison, P. D. (2014). Event history and survival analysis (2nd ed.). Los Angeles, CA: SAGE Publications.
[2] Andersen, P. K. (ed.), Borgan, O. (ed.), Gill, R. D. (ed.), & Keiding, N. (ed.) (Eds.). (1993). Statistical models based on counting processes. New York, NY: Springer. · Zbl 0769.62061
[3] Austin, P. C. (2017). A tutorial on multilevel survival analysis: Methods, models and applications. International Statistical Review, 85, 185-203. · Zbl 07763544
[4] Barnett, A. G., Batra, R., Graves, N., Edgeworth, J., Robotham, J., & Cooper, B. (2009). Using a longitudinal model to estimate the effect of methicillin���resistant Staphylococcus aureus infection on length of stay in an intensive care unit. American Journal of Epidemiology, 170, 1186-1194.
[5] Berger, M., & Schmid, M. (2018). Semiparametric regression for discrete time‐to‐event data. Statistical Modelling, 18, 322-345. · Zbl 07289511
[6] Berger, M. & Schmid, M. (2020). Assessing the calibration of subdistribution hazard models in discrete time. Technical Report arXiv:2001.11240 [stat.ME]. · Zbl 1492.62167
[7] Berger, M., Schmid, M., Welchowski, T., Schmitz‐Valckenberg, S., & Beyersmann, J. (2020). Subdistribution hazard models for competing risks in discrete time. Biostatistics, 21, 449-466.
[8] Berger, M., Welchowski, T., Schmitz‐Valckenberg, S., & Schmid, M. (2019). A classification tree approach for the modeling of competing risks in discrete time. Advances in Data Analysis and Classification, 13, 965-990. · Zbl 1474.62382
[9] Beyersmann, J., Allignol, A., & Schumacher, M. (2011). Competing risks and multistate models with R. Heidelberg: Springer.
[10] Beyersmann, J., & Schrade, C. (2017). Florence nightingale, William Farr and competing risks. Journal of the Royal Statistical Society, Series A. Statistics in Society, 180, 285-293.
[11] Beyersmann, J., & Schumacher, M. (2007). Misspecified regression model for the subdistribution hazard of a competing risk. Statistics in Medicine, 26, 1649-1652.
[12] Bou‐Hamad, I., Larocque, D., Ben‐Ameur, H., Masse, L., Vitaro, F., & Tremblay, R. (2009). Discrete‐time survival trees. The Canadian Journal of Statistics, 37, 17-32. · Zbl 1170.62074
[13] Box‐Steffensmeier, J. M., & Jones, B. S. (2004). Event history modeling. Cambridge, MA: Cambridge University Press.
[14] Chen, D.‐G. (ed.), Sun, J. (ed.), & Peace, K. E. (ed.) (Eds.). (2012). Interval‐censored time‐to‐event data. Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1274.62040
[15] Cortese, G., & Andersen, P. K. (2010). Competing risks and time‐dependent covariates. Biometrical Journal, 52, 138-158. · Zbl 1207.62087
[16] CRASH‐2 Trial Collaborators. (2010). Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH‐2): A randomised, placebo‐controlled trial. The Lancet, 376, 23-32.
[17] Enberg, J., Gottschalk, P., & Wolf, D. (1990). A random‐effects logit model of work‐welfare transitions. Journal of Econometrics, 43, 63-75.
[18] Fahrmeir, L., & Wagenpfeil, S. (1996). Smoothing hazard functions and time‐varying effects in discrete duration and competing risks models. Journal of the American Statistical Association, 91, 1584-1594. · Zbl 0883.62098
[19] Fehring, R., Schneider, M., Raviele, K., Rodriguez, D., & Pruszynski, J. (2013). Randomized comparison of two internet‐supported fertility‐awareness‐based methods of family planning. Contraception, 88, 24-30.
[20] Fine, J. P., & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94, 496-509. · Zbl 0999.62077
[21] Gorgi Zadeh, S., & Schmid, M. (2020). Bias in cross‐entropy‐based training of deep survival networks. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: https://doi.org/10.1109/TPAMI.2020.2979450. · doi:10.1109/TPAMI.2020.2979450
[22] Han, A., & Hausman, J. (1990). Flexible parametric estimation of duration and competing risk models. Journal of Applied Econometrics, 5, 1-28.
[23] Hess, W., & Persson, M. (2012). The duration of trade revisited—Continuous‐time versus discrete‐time hazards. Empirical Economics, 43, 1083-1107.
[24] Heyard, R., Timsit, J.‐F., Essaied, W., Held, L., & COMBACTE‐MAGNET Consortium. (2019). Dynamic clinical prediction models for discrete time‐to‐event data with competing risks—A case study on the OUTCOMEREA database. Biometrical Journal, 61, 514-534. · Zbl 1429.62538
[25] Heyard, R., Timsit, J.‐F., Held, L., & COMBACTE‐MAGNET Consortium. (2020). Validation of discrete time‐to‐event prediction models in the presence of competing risks. Biometrical Journal, 62, 643-657. · Zbl 1436.62563
[26] Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651-674.
[27] Janitza, S., & Tutz, G. (2015). Prediction models for time discrete competing risks. Technical Report 177. Department of Statistics, Ludwig‐Maximilians‐Universität München.
[28] Jóźwiak, K., & Moerbeek, M. (2012). Power analysis for trials with discrete‐time survival endpoints. Journal of Educational and Behavioral Statistics, 37, 630-654.
[29] Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). Hoboken, NJ: Wiley. · Zbl 1012.62104
[30] Klein, J. P. (2010). Competing risks. WIREs Computational Statistics, 2, 333-339.
[31] Kleinbaum, D. G., & Klein, M. (2012). Survival analysis (3rd ed.). New York, NY: Springer.
[32] Kvamme, H.,& Borgan, O. (2019). Continuous and discrete‐time survival prediction with neural networks. Technical Report arXiv:1910.06724 [stat.ML].
[33] Lee, C., Yoon, J., & van derSchaar, M. (2020). Dynamic‐DeepHit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data. IEEE Transactions on Biomedical Engineering, 67, 122-133.
[34] Lee, C., Zame, W. R., Yoon, J., & van derSchaar, M. (2018). DeepHit: A deep learning approach to survival analysis with competing risks. In Proceedings of the Thirty‐Second AAAI Conference on Artificial Intelligence (pp. 2314-2321). Palo Alto: AAAI Press.
[35] Lee, M. (2017). Inference for cumulative incidence on discrete failure times with competing risks. Journal of Statistical Computation and Simulation, 87, 1989-2001. · Zbl 07192045
[36] Lee, M., Feuer, E., & Fine, J. (2018). On the analysis of discrete time competing risks data. Biometrics, 74, 1468-1481.
[37] Li, C. (2016). Cause‐specific hazard regression for competing risks data under interval censoring and left truncation. Computational Statistics & Data Analysis, 104, 197-208. · Zbl 1466.62133
[38] Luo, S., Kong, X., & Nie, T. (2016). Spline based survival model for credit risk modeling. European Journal of Operational Research, 253, 869-879. · Zbl 1346.91252
[39] McCall, B. (1996). Unemployment insurance rules, joblessness, and part‐time work. Econometrica, 64, 647-682. · Zbl 0847.90039
[40] Meggiolaro, S., Giraldo, A., & Clerici, R. (2017). A multilevel competing risks model for analysis of university students’ careers in Italy. Studies in Higher Education, 42, 1259-1274.
[41] Möst, S., Pößnecker, W., & Tutz, G. (2016). Variable selection for discrete competing risks models. Quality & Quantity, 50, 1589-1610.
[42] Narendranathan, W., & Stewart, M. (1993). Modelling the probability of leaving unemployment: Competing risks models with flexible base‐line hazards. Journal of the Royal Statistical Society, Series C, 42, 63-83. · Zbl 0825.62964
[43] Poguntke, I., Schumacher, M., Beyersmann, J., & Wolkewitz, M. (2018). Simulation shows undesirable results for competing risks analysis with time‐dependent covariates for clinical outcomes. BMC Medical Research Methodology, 18, 79.
[44] Putter, H., Fiocco, M., & Geskus, R. B. (2007). Tutorial in biostatistics: Competing risks and multi‐state models. Statistics in Medicine, 26, 2389-2430.
[45] Scheike, T. H., & Keiding, N. (2006). Design and analysis of time‐to‐pregnancy. Statistical Methods in Medical Research, 15, 127-140. · Zbl 1122.62374
[46] Schmid, M., Küchenhoff, H., Hoerauf, A., & Tutz, G. (2016). A survival tree method for the analysis of discrete event times in clinical and epidemiological studies. Statistics in Medicine, 35, 734-751.
[47] Schmid, M., Tutz, G., & Welchowski, T. (2018). Discrimination measures for discrete time‐to‐event predictions. Econometrics and Statistics, 7, 153-164.
[48] Scott, M. A., & Kennedy, B. B. (2005). Pitfalls in pathways: Some perspectives on competing risks event history analysis in education research. Journal of Educational and Behavioral Statistics, 30, 413-442.
[49] Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis. Oxford: Oxford University Press. · Zbl 1031.62002
[50] Sparapani, R., Logan, B., McCulloch, R., & Laud, P. (2016). Nonparametric survival analysis using Bayesian additive regression trees (BART). Statistics in Medicine, 35, 2741-2753.
[51] Sreedevi, E., Sankaran, P., & Dhanavanthan, P. (2014). A nonparametric test for comparing cumulative incidence functions of current status competing risks data. Journal of Statistical Theory and Practice, 8, 743-759.
[52] Steele, F., Goldstein, H., & Browne, W. (2004). A general multilevel multistate competing risks model for event history data, with an application to a study of contraceptive use dynamics. Statistical Modelling, 4, 145-159. · Zbl 1130.62361
[53] Steinberg, J. S., Göbel, A. P., Thiele, S., Fleckenstein, M., Holz, F. G., & Schmitz‐Valckenberg, S. (2016). Development of intraretinal cystoid lesions in eyes with intermediate age‐related macular degeneration. Retina, 36, 1548-1556.
[54] Troncoso‐Ponce, D. (2018). Estimation of competing risks duration models with unobserved heterogeneity using hsmlogit. Available at SSRN: https://doi.org/10.2139/ssrn.3114159. · doi:10.2139/ssrn.3114159
[55] Tutz, G. (1995). Competing risks models in discrete time with nominal or ordinal categories of response. Quality and Quantity, 29, 405-420.
[56] Tutz, G., & Schmid, M. (2016). Modeling discrete time‐to‐event data. New York: Springer. · Zbl 1338.62006
[57] Vallejos, C. A., & Steel, M. F. J. (2017). Bayesian survival modelling of university outcomes. Journal of the Royal Statistical Society, Series A, 180, 613-631.
[58] Yeh, C., Le, C., & McHugh, R. (1984). Competing risk analysis for life table data with known observation times. Biometrical Journal, 26, 111-118.
[59] Young, J. G., Stensrud, M. J., Tchetgen Tchetgen, E. J., & Hernán, M. A. (2020). A causal framework for classical statistical estimands in failure‐time settings with competing events. Statistics in Medicine, 39, 1199-1236.
[60] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418-1429. · Zbl 1171.62326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.