×

High-dimensional covariance matrix estimation. (English) Zbl 07909786


MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

glasso
Full Text: DOI

References:

[1] Abadir, K. M., Distaso, W., & Žikeš, F. (2014). Design‐free estimation of variance matrices. Journal of Econometrics, 181(2), 165-180. · Zbl 1311.62078
[2] Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433-459.
[3] Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191-221. · Zbl 1103.91399
[4] Bai, Z. D., & Yin, Y. Q. (1993). Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. The Annals of Probability, 21(3), 1275-1294. · Zbl 0779.60026
[5] Banerjee, O., El Ghaoui, L., & d’Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9, 485-516. · Zbl 1225.68149
[6] Bickel, P. J., & Levina, E. (2008a). Covariance regularization by thresholding. The Annals of Statistics, 36(6), 2577-2604. · Zbl 1196.62062
[7] Bickel, P. J., & Levina, E. (2008b). Regularized estimation of large covariance matrices. The Annals of Statistics, 36(1), 199-227. · Zbl 1132.62040
[8] Bien, J. (2019). Graph‐guided banding of the covariance matrix. Journal of the American Statistical Association, 114(526), 782-792. · Zbl 1420.62239
[9] Bien, J., Bunea, F., & Xiao, L. (2016). Convex banding of the covariance matrix. Journal of the American Statistical Association, 111(514), 834-845.
[10] Bien, J., & Tibshirani, R. J. (2011). Sparse estimation of a covariance matrix. Biometrika, 98(4), 807-820. · Zbl 1228.62063
[11] Cai, T., & Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of the American Statistical Association, 106(494), 672-684. · Zbl 1232.62086
[12] Cai, T., Liu, W., & Luo, X. (2011). A constrained ℓ_1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494), 594-607. · Zbl 1232.62087
[13] Cai, T. T., Liu, W., & Zhou, H. H. (2016). Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44(2), 455-488. · Zbl 1341.62115
[14] Cai, T. T., Ren, Z., & Zhou, H. H. (2016). Estimating structured high‐dimensional covariance and precision matrices: Optimal rates and adaptive estimation. Electronic Journal of Statistics, 10(1), 1-59. · Zbl 1331.62272
[15] Cai, T. T., & Yuan, M. (2012). Adaptive covariance matrix estimation through block thresholding. The Annals of Statistics, 40(4), 2014-2042. · Zbl 1257.62060
[16] Cai, T. T., Zhang, C.‐H., & Zhou, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. The Annals of Statistics, 38(4), 2118-2144. · Zbl 1202.62073
[17] Chamberlain, G., & Rothschild, M. (1983). Arbitrage, factor structure, and mean‐variance analysis on large asset markets. Econometrica, 51(5), 1281-1304. · Zbl 0523.90017
[18] Chandrasekaran, V., Parrilo, P. A., & Willsky, A. S. (2012). Latent variable graphical model selection via convex optimization. The Annals of Statistics, 40(4), 1935-1967. · Zbl 1257.62061
[19] Chen, M., Gao, C., & Ren, Z. (2018). Robust covariance and scatter matrix estimation under Huber’s contamination model. The Annals of Statistics, 46(5), 1932-1960. · Zbl 1408.62104
[20] Daniels, M. J., & Kass, R. E. (2001). Shrinkage estimators for covariance matrices. Biometrics, 57(4), 1173-1184. · Zbl 1209.62132
[21] Dao, C., Lu, K., & Xiu, D. (2017). Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data (Chicago Booth Research Paper No. 17‐02).
[22] DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798-812. · Zbl 1232.91617
[23] Donoho, D., Gavish, M., & Johnstone, I. (2018). Optimal shrinkage of eigenvalues in the spiked covariance model. The Annals of Statistics, 46(4), 1742-1778. · Zbl 1403.62099
[24] Engle, R. F., Ledoit, O., & Wolf, M. (2019). Large dynamic covariance matrices. Journal of Business & Economic Statistics, 37(2), 363-375.
[25] Fan, J., Fan, Y., & Lv, J. (2008). High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 147(1), 186-197. · Zbl 1429.62185
[26] Fan, J., & Kim, D. (2018). Robust high‐dimensional volatility matrix estimation for high‐frequency factor model. Journal of the American Statistical Association, 113(523), 1268-1283. · Zbl 1402.62250
[27] Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360. · Zbl 1073.62547
[28] Fan, J., Li, Y., & Yu, K. (2012). Vast volatility matrix estimation using high‐frequency data for portfolio selection. Journal of the American Statistical Association, 107(497), 412-428. · Zbl 1328.91266
[29] Fan, J., Liao, Y., & Liu, H. (2016). An overview of the estimation of large covariance and precision matrices. The Econometrics Journal, 19(1), C1-C32. · Zbl 1521.62083
[30] Fan, J., Liao, Y., & Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 75(4), 603-680. · Zbl 1411.62138
[31] Fan, J., Liu, H., & Wang, W. (2018). Large covariance estimation through elliptical factor models. The Annals of Statistics, 46(4), 1383-1414. · Zbl 1402.62124
[32] Fan, J., Wang, W., & Zhong, Y. (2019). Robust covariance estimation for approximate factor models. Journal of Econometrics, 208(1), 5-22. · Zbl 1452.62410
[33] Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. · Zbl 1143.62076
[34] Furrer, R., Genton, M. G., & Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3), 502-523.
[35] Guo, S., Box, J. L., & Zhang, W. (2017). A dynamic structure for high‐dimensional covariance matrices and its application in portfolio allocation. Journal of the American Statistical Association, 112(517), 235-253.
[36] Huang, J. Z., Liu, N., Pourahmadi, M., & Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika, 93(1), 85-98. · Zbl 1152.62346
[37] Huang, N., & Fryzlewicz, P. (2019). Novelist estimator of large correlation and covariance matrices and their inverses. TEST, 28(3), 694-727. · Zbl 1420.62140
[38] Joachimi, B. (2016). Non‐linear shrinkage estimation of large‐scale structure covariance. Monthly Notices of the Royal Astronomical Society: Letters, 466(1), L83-L87.
[39] Johnstone, I. M., & Lu, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. Journal of the American Statistical Association, 104(486), 682-693. · Zbl 1388.62174
[40] Johnstone, I. M., & Paul, D. (2018). Pca in high dimensions: An orientation. Proceedings of the IEEE, 106(8), 1277-1292.
[41] Kendall, M. (1948). Rank correlation methods. London, England: Griffin. · Zbl 0032.17602
[42] Lam, C. (2016). Nonparametric eigenvalue‐regularized precision or covariance matrix estimator. The Annals of Statistics, 44(3), 928-953. · Zbl 1341.62124
[43] Lam, C., & Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. The Annals of Statistics, 37(6B), 4254-4278. · Zbl 1191.62101
[44] Lam, C., & Feng, P. (2018). A nonparametric eigenvalue‐regularized integrated covariance matrix estimator for asset return data. Journal of Econometrics, 206(1), 226-257. · Zbl 1398.62311
[45] Lam, C., Feng, P., & Hu, C. (2017). Nonlinear shrinkage estimation of large integrated covariance matrices. Biometrika, 104(2), 481-488. · Zbl 1506.62410
[46] Lam, C., Yao, Q., & Bathia, N. (2011). Estimation of latent factors for high‐dimensional time series. Biometrika, 98(4), 901-918. · Zbl 1228.62110
[47] Ledoit, O., & Péché, S. (2011). Eigenvectors of some large sample covariance matrix ensembles. Probability Theory and Related Fields, 151(1-2), 233-264. · Zbl 1229.60009
[48] Ledoit, O., & Wolf, M. (2004). A well‐conditioned estimator for large‐dimensional covariance matrices. Journal of Multivariate Analysis, 88(2), 365-411. · Zbl 1032.62050
[49] Ledoit, O., & Wolf, M. (2012). Nonlinear shrinkage estimation of large‐dimensional covariance matrices. The Annals of Statistics, 40(2), 1024-1060. · Zbl 1274.62371
[50] Ledoit, O., & Wolf, M. (2015). Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions. Journal of Multivariate Analysis, 139, 360-384. · Zbl 1328.62340
[51] Ledoit, O., & Wolf, M. (2017). Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. The Review of Financial Studies, 30(12), 4349-4388.
[52] Li, D., Xue, L., & Zou, H. (2018). Applications of peter Hall’s martingale limit theory to estimating and testing high dimensional covariance matrices. Statistica Sinica, 28, 2657-2670. · Zbl 1406.62057
[53] Li, D., & Zou, H. (2016). Sure information criteria for large covariance matrix estimation and their asymptotic properties. IEEE Transactions on Information Theory, 62(4), 2153-2169. · Zbl 1359.94270
[54] Liu, H., Han, F., Yuan, M., Lafferty, J., & Wasserman, L. (2012). High‐dimensional semiparametric gaussian copula graphical models. The Annals of Statistics, 40(4), 2293-2326. · Zbl 1297.62073
[55] Liu, H., Lafferty, J., & Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10, 2295-2328. · Zbl 1235.62035
[56] Ma, S., Xue, L., & Zou, H. (2013). Alternating direction methods for latent variable gaussian graphical model selection. Neural Computation, 25(8), 2172-2198. · Zbl 1418.62234
[57] Marčenko, V., & Pastur, L. (1967). Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR‐Sbornik, 1, 457-483. · Zbl 0162.22501
[58] Mazumder, R., & Hastie, T. (2012). The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6, 2125-2149. · Zbl 1295.62066
[59] Meinshausen, N., & Bühlmann, P. (2006). High‐dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3), 1436-1462. · Zbl 1113.62082
[60] Pan, J., & Mackenzie, G. (2003). On modelling mean covariance structures in longitudinal studies. Biometrika, 90(1), 239-244. · Zbl 1039.62068
[61] Paul, D., & Aue, A. (2014). Random matrix theory in statistics: A review. Journal of Statistical Planning and Inference, 150, 1-29. · Zbl 1287.62011
[62] Pourahmadi, M. (2007). Cholesky decompositions and estimation of a covariance matrix: Orthogonality of variance‐correlation parameters. Biometrika, 94(4), 1006-1013. · Zbl 1156.62043
[63] Pourahmadi, M. (2013). High‐dimensional covariance estimation with high‐dimensional data. In Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley Interscience. · Zbl 1276.62031
[64] Qiu, Y., & Chen, S. X. (2012). Test for bandedness of high‐dimensional covariance matrices and bandwidth estimation. The Annals of Statistics, 40(3), 1285-1314. · Zbl 1257.62064
[65] Ravikumar, P., Wainwright, M. J., Raskutti, G., & Yu, B. (2011). High‐dimensional covariance estimation by minimizing 1‐penalized log‐determinant divergence. Electronic Journal of Statistics, 5, 935-980. · Zbl 1274.62190
[66] Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341-360.
[67] Rothman, A. J., Bickel, P. J., Levina, E., & Zhu, J. (2008). Sparse permutation invariant covariance estimation. Electronic Journal of Statistics, 2, 494-515. · Zbl 1320.62135
[68] Rothman, A. J., Levina, E., & Zhu, J. (2009). Generalized thresholding of large covariance matrices. Journal of the American Statistical Association, 104(485), 177-186. · Zbl 1388.62170
[69] Rothman, A. J., Levina, E., & Zhu, J. (2010). A new approach to Cholesky‐based covariance regularization in high dimensions. Biometrika, 97(3), 539-550. · Zbl 1195.62089
[70] Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large‐scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1), Article 32.
[71] Shen, D., Shen, H., & Marron, J. S. (2016). A general framework for consistency of principal component analysis. Journal of Machine Learning Research, 17, 1-29. · Zbl 1392.62177
[72] Stein, C. (1975). Estimation of a covariance matrix. Paper presented at Rietz Lecture, 39th Annual Meeting IMS. Atlanta, GA.
[73] Stein, C. (1986). Lectures on the theory of estimation of many parameters. Journal of Soviet mathematics, 34(1), 1373-1403. · Zbl 0593.62049
[74] Wang, Y., & Zou, J. (2010). Vast volatility matrix estimation for high‐frequency financial data. The Annals of Statistics, 38(2), 943-978. · Zbl 1183.62184
[75] Warton, D. I. (2008). Penalized normal likelihood and ridge regularization of correlation and covariance matrices. Journal of the American Statistical Association, 103(481), 340-349. · Zbl 1471.62362
[76] Won, J.‐H., Lim, J., Kim, S.‐J., & Rajaratnam, B. (2013). Condition‐number‐regularized covariance estimation. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 75(3), 427-450. · Zbl 1411.62146
[77] Xue, L., Ma, S., & Zou, H. (2012). Positive‐definite 1‐penalized estimation of large covariance matrices. Journal of the American Statistical Association, 107(500), 1480-1491. · Zbl 1258.62063
[78] Xue, L., & Zou, H. (2012). Regularized rank‐based estimation of high‐dimensional nonparanormal graphical models. The Annals of Statistics, 40(5), 2541-2571. · Zbl 1373.62138
[79] Xue, L., & Zou, H. (2014). Rank‐based tapering estimation of bandable correlation matrices. Statistica Sinica, 24, 83-100. · Zbl 1285.62062
[80] Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1), 19-35. · Zbl 1142.62408
[81] Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, 106(8), 1311-1320.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.