×

A unifying formulation of the Fokker-Planck-Kolmogorov equation for general stochastic hybrid systems. (English) Zbl 1201.93063

Summary: A general formulation of the Fokker-Planck-Kolmogorov (FPK) equation for stochastic hybrid systems is presented, within the framework of Generalized Stochastic Hybrid Systems (GSHSs). The FPK equation describes the time evolution of the probability law of the hybrid state. Our derivation is based on the concept of mean jump intensity, which is related to both the usual stochastic intensity (in the case of spontaneous jumps) and the notion of probability current (in the case of forced jumps). This work unifies all previously known instances of the FPK equation for stochastic hybrid systems, and provides GSHS practitioners with a tool to derive the correct evolution equation for the probability law of the state in any given example.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93E03 Stochastic systems in control theory (general)
60J75 Jump processes (MSC2010)
35Q84 Fokker-Planck equations

Software:

ToolboxLS

References:

[1] M.L. Bujorianu, J. Lygeros, General stochastic hybrid systems: Modelling and optimal control, in: Proceedings of the 43rd IEEE Conference on Decision and Control, CDC 2004, volume 2, 2004, pp. 1872-1877; M.L. Bujorianu, J. Lygeros, General stochastic hybrid systems: Modelling and optimal control, in: Proceedings of the 43rd IEEE Conference on Decision and Control, CDC 2004, volume 2, 2004, pp. 1872-1877
[2] Bujorianu, M. L.; Lygeros, J., Toward a general theory of stochastic hybrid systems, (Stochastic Hybrid Systems: Theory and Safety Critical Applications. Stochastic Hybrid Systems: Theory and Safety Critical Applications, LNCIS, vol. 337 (2006), Springer-Verlag), 3-30 · Zbl 1130.93048
[3] Davis, M. H.A., Piecewise deterministic Markov processes: A general class of nondiffusion stochastic models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 46, 353-388 (1984) · Zbl 0565.60070
[4] Davis, M. H.A., Markov Models and Optimization (1993), Chapman & Hall: Chapman & Hall London · Zbl 0780.60002
[5] Ghosh, M. K.; Arapostathis, A.; Marcus, S. I., Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM Journal on Control and Optimization, 30, 6, 1-23 (1992)
[6] Ghosh, M. K.; Arapostathis, A.; Marcus, S. I., Ergodic control of switching diffusions, SIAM Journal on Control and Optimization, 35, 6, 1952-1988 (1997) · Zbl 0891.93081
[7] Hu, J.; Lygeros, J.; Sastry, S., Towards a Theory of Stochastic Hybrid Systems (2000), Springer, pp. 160-173 · Zbl 0962.93082
[8] M.L. Bujorianu, J. Lygeros, W. Glover, G. Pola, A stochastic hybrid system modeling framework, Technical Report WP1, Deliv.1.2, HYBRIDGE (IST-2001-32460), 2003; M.L. Bujorianu, J. Lygeros, W. Glover, G. Pola, A stochastic hybrid system modeling framework, Technical Report WP1, Deliv.1.2, HYBRIDGE (IST-2001-32460), 2003
[9] G. Pola, M.L. Bujorianu, J. Lygeros, M.D. Di Benedetto, Stochastic hybrid models: An overview with application to air traffic management, in: ADHS 03, IFAC Conference on Analysis and Design of Hybrid Systems, 2003; G. Pola, M.L. Bujorianu, J. Lygeros, M.D. Di Benedetto, Stochastic hybrid models: An overview with application to air traffic management, in: ADHS 03, IFAC Conference on Analysis and Design of Hybrid Systems, 2003
[10] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1985), Springer-Verlag · Zbl 0862.60050
[11] Kontorovich, V.; Lyandres, V., Dynamic systems with random structure: An approach to the generation of nonstationary stochastic processes, Journal of the Franklin Institute, 336, 939-954 (1999) · Zbl 0972.93064
[12] J. Krystul, A. Bagchi, H.A.P. Blom, Risk decomposition and assessment methods, Technical Report D8.1, HYBRIDGE (IST-2001-32460), 2003; J. Krystul, A. Bagchi, H.A.P. Blom, Risk decomposition and assessment methods, Technical Report D8.1, HYBRIDGE (IST-2001-32460), 2003
[13] Hespanha, J. P., A model for stochastic hybrid systems with application to communication networks, Nonlinear Analysis: Theory, Methods and Applications, 62, 1353-1383 (2005) · Zbl 1131.90322
[14] Feller, W., The parabolic differential equations and the associated semi-groups of transformations, Annals of Mathematics, 55, 3, 468-519 (1952) · Zbl 0047.09303
[15] Feller, W., Diffusion processes in one dimension, Transactions of the American Mathematical Society, 77, 1-31 (1954) · Zbl 0059.11601
[16] Malhamé, R.; Chong, C., Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic system, IEEE Transactions on Automatic Control, 30, 9, 854-860 (1985) · Zbl 0566.93050
[17] J. Bect, H. Baili, G. Fleury, Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets, in: Proceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems, MTNS 2006, Kyoto, Japan, 2006; J. Bect, H. Baili, G. Fleury, Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets, in: Proceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems, MTNS 2006, Kyoto, Japan, 2006
[18] J. Bect, Processus de Markov diffusif par morceaux: outils analytiques et numériques Ph.D. Thesis, Université Paris Sud XI, 2007 (in French); J. Bect, Processus de Markov diffusif par morceaux: outils analytiques et numériques Ph.D. Thesis, Université Paris Sud XI, 2007 (in French)
[19] Everdij, M. H.C.; Blom, H. A.P., Hybrid Petri nets with diffusion that have into-mappings with generalised stochastic hybrid processes, Lecture Notes in Control and Information Sciences, 337, 31-63 (2006) · Zbl 1130.93049
[20] Blumenthal, R. M.; Getoor, R. K., Markov processes and potential theory, (Pure and Applied Mathematics, vol. 29 (1968), Academic Press: Academic Press New York) · Zbl 0169.49204
[21] Dynkin, E. B., Markov Processes (1965), Springer · Zbl 0132.37901
[22] Sharpe, M., General Theory of Markov Processes (1988), Academic Press Inc. · Zbl 0649.60079
[23] Rogers, L. C.G.; Williams, D., Diffusions, Markov Processes, and Martingales. Volume 2: Itô Calculus. 2nd edition (2000), Cambridge University Press · Zbl 0977.60005
[24] Walsh, J. B.; Weil, M., Représentation de temps terminaux et applications aux fonctionnelles additives et aux systèmes de Lévy, Annales scientifiques de l’E.N.S. \(4^e\) série, 5, 1, 121-155 (1972) · Zbl 0241.60060
[25] Rudin, W., Function Analysis (1973), McGraw-Hill · Zbl 0253.46001
[26] Cohn, D. L., Measure Theory (1980), Birkhäuser · Zbl 0436.28001
[27] Lee, J. M., Introduction to smooth manifolds, (Graduate Texts in Mathematics (2003), Springer-Verlag) · Zbl 1258.53002
[28] I. Lubashevsky, R. Friedrich, R. Mahnke, A. Ushakov, N. Kubrakov, Boundary singularities and boundary conditions for the Fokker-Planck equations, 2006; I. Lubashevsky, R. Friedrich, R. Mahnke, A. Ushakov, N. Kubrakov, Boundary singularities and boundary conditions for the Fokker-Planck equations, 2006
[29] Bichteler, K.; Gravereaux, J.-B.; Jacod, J., Malliavin Calculus for Processes with Jumps (1987), Gordon and Breach Science Publishers · Zbl 0706.60057
[30] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North Holland-Kodansha: North Holland-Kodansha Tokyo · Zbl 0495.60005
[31] Le Bris, C.; Lions, P. L., Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Communications in Partial Differential Equations, 33, 7, 1272-1317 (2008) · Zbl 1157.35301
[32] J. Bect, Y. Phulpin, H. Baili, G. Fleury, On the Fokker-Planck equation for stochastic hybrid systems: Application to a wind turbine model, in: Proc. of the 9th Int. Conf. on Probabilistic Methods Applied to Power Systems, PMAPS, 2006; J. Bect, Y. Phulpin, H. Baili, G. Fleury, On the Fokker-Planck equation for stochastic hybrid systems: Application to a wind turbine model, in: Proc. of the 9th Int. Conf. on Probabilistic Methods Applied to Power Systems, PMAPS, 2006
[33] Mitchell, I. M., The flexible, extensible and efficient toolbox of level set methods, Journal of Scientific Computing, 35, 2, 300-329 (2008) · Zbl 1203.65295
[34] Mitchell, I. M.; Templeton, J. A., A Toolbox of Hamilton-Jacobi solvers for Analysis of Nondeterministic Continuous and Hybrid Systems, vol. 3414 (2005), Springer, pp. 480-494 · Zbl 1078.93522
[35] J. Bect, A unifying formulation of the Fokker-Planck-Kolmogorov equation for general stochastic hybrid systems, in: Proceedings of the 17th IFAC World Congress, 2008; J. Bect, A unifying formulation of the Fokker-Planck-Kolmogorov equation for general stochastic hybrid systems, in: Proceedings of the 17th IFAC World Congress, 2008 · Zbl 1201.93063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.