×

Empirical risk minimization for dominance-based rough set approaches. (English) Zbl 1523.68097

Summary: In this paper, we consider two parametric dominance-based rough set approaches (DRSA) proposed in the literature: variable precision DRSA (VP-DRSA) and variable consistency DRSA (VC-DRSA). They were introduced to cope with classification data encountered in practice for which the original definition of lower approximations is too restrictive. Both these extensions allow an augmentation of lower approximations, which is controlled parametrically in different ways. We give statistical interpretations for VP-DRSA and VC-DRSA from the perspective of empirical risk minimization typical for machine learning. Given families of classifiers and loss functions, we consider classification problems which relate directly VP-DRSA and VC-DRSA to ordinal classification. Then, we characterize the parametrically augmented lower approximations of both approaches as optimal solutions of associated empirical risk minimization problems. As a consequence, a connection between parametric DRSA and statistical learning is established. Moreover, new characterizations of the augmented lower approximations allow us to exhibit differences and similarities between VP-DRSA and VC-DRSA.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
62H30 Classification and discrimination; cluster analysis (statistical aspects)
68T05 Learning and adaptive systems in artificial intelligence

Software:

PRMLT
Full Text: DOI

References:

[1] Berger, J. O., Statistical Decision Theory and Bayesian Analysis (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0572.62008
[2] Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics) (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1107.68072
[3] Błaszczyński, J.; Greco, S.; Słowiński, R.; Szeląg, M., On variable consistency dominance-based rough set approaches, (Greco, S.; Hata, Y.; Hirano, S.; Inuiguchi, M.; Miyamoto, S.; Nguyen, H. S.; Słowiński, R., Rough Sets and Current Trends in Computing (2006), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 191-202 · Zbl 1162.68520
[4] Błaszczyński, J.; Greco, S.; Słowiński, R.; Szeląg, M., Monotonic variable consistency rough set approaches, Internal J. Approx. Reason., 50, 979-999 (2009) · Zbl 1191.68673
[5] Błaszczyński, J.; Słowiński, R.; Szeląg, M., Sequential covering rule induction algorithm for variable consistency rough set approaches, Inf. Sci., 181, 5, 987-1002 (2011)
[6] Fang, Y.; Gao, C.; Yao, Y., Granularity-driven sequential three-way decisions: a cost-sensitive approach to classification, Inf. Sci., 507, 644-664 (2020)
[7] Fitelson, B., Likelihoodism, Bayesianism, and relational confirmation, Synthese, 156, 473-489 (2007) · Zbl 1125.03302
[8] Fürnkranz, J.; Gamberger, D.; Lavrač, N., Foundations of Rule Learning (2012), Springer-Verlag Berlin Heidelberg · Zbl 1263.68002
[9] Greco, S.; Matarazzo, B.; Słowiński, R., Rough sets theory for multicriteria decision analysis, Eur. J. Oper. Res., 129, 1-47 (2001) · Zbl 1008.91016
[10] Greco S., Matarazzo B., Słowiński R., Stefanowski J., Variable consistency model of dominance-based rough sets approach, in: Ziarko W., Yao Y. (Eds.), Rough Sets and Current Trends in Computing, Vol. 2005 of LNAI, Springer-Verlag, Berlin, Heidelberg, 2001, pp. 170-181. https://doi.org/10.1007/3-540-45554-X_20. · Zbl 1014.68544
[11] Greco, S.; Słowiński, R.; Yao, Y., Bayesian decision theory for dominance-based rough set approach, (Yao, J.; Lingras, P.; Wu, W.-Z.; Szczuka, M.; Cercone, N. J.; Ślęzak, D., Rough Sets and Knowledge Technology (2007), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 134-141
[12] Inuiguchi, M.; Yoshioka, Y.; Kusunoki, Y., Variable-precision dominance-based rough set approach and attribute reduction, Int. J. Approx. Reason., 50, 1199-1214 (2009) · Zbl 1191.68681
[13] Ju, H.; Yang, X.; Yu, H.; Li, T.; Yu, D.-J.; Yang, J., Cost-sensitive rough set approach, Inf. Sci., 355-356, 282-298 (2016) · Zbl 1427.68315
[14] Liu, D.; Liang, D., Three-way decisions in ordered decision system, Knowl.-Based Syst., 137, 182-195 (2017)
[15] Liu, J.; Li, H.; Zhou, X.; Huang, B.; Wang, T., An optimization-based formulation for three-way decisions, Inf. Sci., 495, 185-214 (2019)
[16] Mohri, M.; Rostamizadeh, A.; Talwalkar, A., Foundations of Machine Learning, (Adaptive Computation and Machine Learning (2018), MIT Press: MIT Press Cambridge, MA) · Zbl 1407.68007
[17] Pawlak, Z., Rough sets, Int. J. Inf. Comput. Sci., 11, 341-356 (1982) · Zbl 0501.68053
[18] Pawlak, Z.; Skowron, A., Rough membership functions, (Yager, R. R.; Kacprzyk, J.; Fedrizzi, M., Advances in the Dempster-Shafer Theory of Evidence (1994), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York, NY, USA), 251-271
[19] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inf. Sci., 177, 3-27 (2007) · Zbl 1142.68549
[20] Słowiński, R.; Vanderpooten, D., A generalized definition of rough approximations based on similarity, IEEE Trans. Knowl. Data Eng., 12, 2, 331-336 (2000)
[21] Słowiński, R.; Yao, Y., Rough sets, (Kacprzyk, J.; Pedrycz, W., Part C of the Handbook of Computational Intelligence (2015), Springer), 329-451
[22] Suo, M.; Tao, L.; Zhu, B.; Miao, X.; Liang, Z.; Ding, Y.; Zhang, X.; Zhang, T., Single-parameter decision-theoretic rough set, Inf. Sci., 539, 49-80 (2020) · Zbl 1474.68365
[23] Vapnik, V. N., Statistical Learning Theory (1998), A Wiley-Interscience Publication: A Wiley-Interscience Publication New York · Zbl 0935.62007
[24] Yao, Y., Probabilistic rough set approximations, Int. J. Approx. Reason., 49, 255-271 (2008) · Zbl 1191.68702
[25] Yao, Y.; Zhou, B., Two Bayesian approaches to rough sets, Eur. J. Oper. Res., 251, 3, 904-917 (2016) · Zbl 1346.68212
[26] Zhang, Q.; Xia, D.; Wang, G., Three-way decision model with two types of classification errors, Inf. Sci., 420, 431-453 (2017) · Zbl 1436.68367
[27] Ziarko, W., Variable precision rough set model, J. Comput. Syst. Sci., 46, 1, 39-59 (1993) · Zbl 0764.68162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.