×

Determining the effective resolution of advection schemes. part I: dispersion analysis. (English) Zbl 1349.65308

Summary: The effective resolution of a numerical scheme describes the smallest spatial scale (largest wavenumber) that is completely resolved by that scheme. Using dispersion relation analysis allows the effective resolution of a numerical scheme for the advection equation to be calculated. The advection equation is a fundamental building block of dynamical cores of atmospheric and ocean models, and this analysis provides an indication of the effective resolution of the numerical methods used by dynamical cores. Using a variety of finite-difference schemes, the effect on effective resolution of using explicit diffusion and hyper-diffusion terms is examined. The choice of order-of-accuracy, and the time-stepping of the numerical scheme is also investigated with regard to effective resolution. Finally, we apply this analysis to methods that are commonly used in dynamical cores of atmospheric general circulation models, namely semi-Lagrangian and finite-volume methods.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

CAM3
Full Text: DOI

References:

[1] Aluie, H.; Kurien, S., Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows, Europhys. Lett., 96, 44006 (2011)
[2] Asselin, R., Frequency filter for time integrations, Mon. Weather Rev., 100, 487-490 (1972)
[3] Colella, P.; Woodward, P. R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201 (1984) · Zbl 0531.76082
[4] Davies, T.; Cullen, M. J.P.; Malcom, A. J.; Mawson, M. H.; Staniforth, A.; White, A. A.; Wood, N., A new dynamical core for the Met Office’s global and regional modelling of the atmosphere, Q. J. R. Meteorol. Soc., 131, 1759-1782 (2005)
[5] Dennis, J. M.; Edwards, J.; Evans, K. J.; Guba, O.; Lauritzen, P. H.; Mirin, A. A.; St-Cyr, A.; Taylor, M. A.; Worley, P. H., CAM-SE: a scalable spectral element dynamical core for the community atmosphere model, Int. J. High Perform. Comput. Appl., 26, 74-89 (2012)
[6] Dubal, M.; Staniforth, A.; Wood, N., Some numerical properties of approaches to physics-dynamics coupling for NWP, Q. J. R. Meteorol. Soc., 132, 27-42 (2006)
[7] Durran, D. R., The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing, Mon. Weather Rev., 119, 702-720 (1991)
[8] Fox-Rabinovitz, M. S.; Stenchikov, G. L.; Suarez, M. J.; Takacs, L. L., A finite-difference GCM dynamical core with a variable-resolution stretched grid, Mon. Weather Rev., 125, 2943-2968 (1997)
[9] Gottlieb, S.; Ketcheson, D. I.; Shu, C.-W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (2011), World Scientific Publishing: World Scientific Publishing New Jersey, USA · Zbl 1241.65064
[10] Hu, F. Q.; Hussaini, M. Y.; Rasetarinera, P., An analysis of the discontinuous Galerkin method for wave propagation problems, J. Comput. Phys., 151, 921-946 (1999) · Zbl 0933.65113
[11] Hundsdorfer, W. B.; Koren, B.; van Loon, M.; Verwer, J. G., A positive finite-difference advection scheme, J. Comput. Phys., 117, 35-46 (1995) · Zbl 0860.65073
[12] Jablonowski, C.; Williamson, D. L., The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, (Lauritzen, P. H.; Jablonowski, C.; Taylor, M. A.; Nair, R. D., Numerical Techniques for Global Atmospheric Models (2011), Springer), 381-493
[13] Kent, J.; Thuburn, J.; Wood, N., Assessing implicit large eddy simulation for two-dimensional flow, Q. J. R. Meteorol. Soc., 138, 365-375 (2012)
[14] Kent, J.; Jablonowski, C.; Whitehead, J. P.; Rood, R. B., Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 1517-1530 (2012)
[15] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215 (1972)
[16] Lander, J.; Hoskins, B., Believable scales and parameterizations in a spectral transform model, Mon. Weather Rev., 125, 292-303 (1997)
[17] Lauritzen, P. H., A stability analysis of finite-volume advection schemes permitting long time steps, Mon. Weather Rev., 135, 2658-2673 (2009)
[18] Lauritzen, P. H.; Nair, R. D.; Ullrich, P. A., A Conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid, J. Comput. Phys., 229, 1401-1424 (2010) · Zbl 1329.65198
[19] Lax, P. D.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802
[20] Lin, S. J., A “vertically Lagrangian” finite-volume dynamical core for global models, Mon. Weather Rev., 132, 2293-2307 (2004)
[21] Lin, S. J.; Rood, R. B., Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Weather Rev., 124, 2046-2070 (1996)
[22] Long, D.; Thuburn, J., Numerical wave propagation on non-uniform one-dimensional staggered grids, J. Comput. Phys., 230, 2643-2659 (2011) · Zbl 1217.65173
[23] Mason, P. J., Large-eddy simulation: A critical review of the technique, Q. J. R. Meteorol. Soc., 120, 1-26 (1994)
[24] McDonald, A., Accuracy of multiply-upstream, semi-Lagrangian advective schemes, Mon. Weather Rev., 112, 1267-1275 (1984)
[25] Melvin, T.; Staniforth, A.; Thuburn, J., Dispersion analysis of the spectral element method, Q. J. R. Meteorol. Soc., 138, 1934-1947 (2012)
[26] Neale, R. B.; Chen, C.-C.; Gettelman, A.; Lauritzen, P. H.; Park, S.; Williamson, D. L.; Conley, A. J.; Garcia, R.; Kinnison, D.; Lamarque, J.-F.; Marsh, D.; Mills, M.; Smith, A. K.; Tilmes, S.; Vitt, F.; Cameron-Smith, P.; Collins, W. D.; Iacono, M. J.; Rasch, P. J.; Taylor, M. A., Description of the NCAR community atmosphere model (CAM 5.0), 1-268 (2010), NCAR Tech. Note NCAR/TN-486+STR
[27] Norman, M. R.; Finkel, H., Multi-moment ADER-Taylor methods for systems of conservation laws with source terms in one dimension, J. Comput. Phys., 231, 6622-6642 (2012)
[28] Randall, D., Geostrophic adjustment and the finite-difference shallow-water equations, Mon. Weather Rev., 122, 1371-1377 (1994)
[29] Robert, A., The integration of a low order spectral form of the primitive meteorological equations, J. Meteorol. Soc. Jpn., 44, 237-245 (1966)
[30] Rood, R. B., Numerical advection algorithms and their role in atmospheric transport and chemistry models, Rev. Geophys., 25, 71-100 (1987)
[31] Skamarock, W. C., Evaluating mesoscale NWP models using kinetic energy spectra, Mon. Weather Rev., 132, 3019-3032 (2004)
[32] Skamarock, W. C., A linear analysis of the NCAR CCSM finite-volume dynamical core, Mon. Weather Rev., 136, 2112-2119 (2008)
[33] Thuburn, J., Some conservation issues for the dynamical cores of NWP and climate models, J. Comput. Phys., 227, 3715-3730 (2008) · Zbl 1132.86314
[34] Toro, E. F.; Millington, R. C.; Nejad, L. A.M., Towards very high order Godunov schemes, (Toro, E. F., Godunov Methods: Theory and Applications (2001), Kluwer Academic/Plenum Publishers: Kluwer Academic/Plenum Publishers New York), 907-940 · Zbl 0989.65094
[35] Tremback, C. J.; Powell, J.; Cotton, W. R.; Pielke, R. A., The forward-in-time upstream advection scheme: extension to higher orders, Mon. Weather Rev., 115, 540-555 (1987)
[36] Ullrich, P. A.; Jablonowski, C., An analysis of 1D finite-volume methods for geophysical problems on refined grids, J. Comput. Phys., 230, 706-725 (2011) · Zbl 1245.76058
[37] Ullrich, P. A.; Jablonowski, C., Operator-split Runge-Kutta-Rosenbrock (RKR) methods for nonhydrostatic atmospheric models, Mon. Weather Rev., 140, 1257-1284 (2011)
[38] Ullrich, P. A.; Jablonowski, C., MCore: A nonhydrostatic atmospheric dynamical core utilizing high-order finite-volume methods, J. Comput. Phys., 231, 5078-5108 (2012) · Zbl 1247.86007
[39] Ullrich, P. A.; Norman, M. R., The flux-form semi-Lagrangian spectral element (FF-SLSE) method for tracer transport, Q. J. R. Meteorol. Soc. (2014)
[40] Ullrich, P. A., Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow-water equations, Q. J. R. Meteorol. Soc. (2014)
[41] Walters, M. K., Comments on “The differentiation between grid spacing and resolution and their application to numerical modeling”, Bull. Am. Meteorol. Soc., 81, 2475-2477 (2000)
[42] Whitehead, J. P.; Jablonowski, C.; Rood, R. B.; Lauritzen, P. H., A stability analysis of divergence damping on a latitude-longitude grid, Mon. Weather Rev., 139, 2976-2993 (2011)
[43] Wicker, L. J.; Skamarock, W. C., Time-splitting methods for elastic models using forward time schemes, Mon. Weather Rev., 130, 2088-2097 (2002)
[44] Williamson, D. L., Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales, Tellus A, 51, 663-673 (1999)
[45] Williamson, D. L., The evolution of dynamical cores for global atmospheric models, J. Meteorol. Soc. Jpn. B, 85, 241-269 (2007)
[46] Williamson, D. L., Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations, Tellus A, 60, 839-847 (2008)
[47] Williamson, D. L.; Olson, J. G., Climate simulations with a semi-Lagrangian version of the NCAR Community Climate Model, Mon. Weather Rev., 122, 1594-1610 (1994)
[48] Zerroukat, M.; Wood, N.; Staniforth, A., SLICE: a semi-Lagrangian inherently conserving and efficient scheme for transport problems, Q. J. R. Meteorol. Soc., 128, 2801-2820 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.