×

A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. (English) Zbl 1287.76183

Summary: A conservative semi-Lagrangian cell-integrated transport scheme (CSLAM) was recently introduced, which ensures global mass conservation and allows long timesteps, multi-tracer efficiency, and shape preservation through the use of reconstruction filtering. This method is fully two-dimensional so that it may be easily implemented on non-cartesian grids such as the cubed-sphere grid. We present a flux-form implementation, FF-CSLAM, which retains the advantages of CSLAM while also allowing the use of flux-limited monotonicity and positivity preservation and efficient tracer sub-cycling. The methods are equivalent in the absence of flux limiting or reconstruction filtering.
FF-CSLAM was found to be third-order accurate when an appropriately smooth initial mass distribution and flow field (with at least a continuous second derivative) was used. This was true even when using highly deformational flows and when the distribution is advected over the singularities in the cubed sphere, the latter a consequence of the full two-dimensionality of the method. Flux-limited monotonicity preservation, which is only available in a flux-form method, was found to be both less diffusive and more efficient than the monotone reconstruction filtering available to CSLAM. Despite the additional overhead of computing fluxes compared to CSLAM’s cell integrations, the non-monotone FF-CSLAM was found to be at most only 40% slower than CSLAM for Courant numbers less than one, with greater overhead for successively larger Courant numbers.

MSC:

76M23 Vortex methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics

Software:

CAM3; chammp
Full Text: DOI

References:

[1] Rančić, M., Semi-Lagrangian piecewise biparabolic scheme for two-dimensional horizontal advection of a passive scalar, Mon. Weather Rev., 120, 1394-1405 (1992)
[2] Leslie, L. M.; Purser, J. R., Three-dimensional mass-conserving semi-Lagrangian scheme employing forward trajectories, Mon. Weather Rev., 123, 2551-2566 (1995)
[3] Laprise, J.; Plante, A., A class of semi-Lagrangian integrated-mass (SLIM) numerical transport algorithms, Mon. Weather Rev., 123, 553-565 (1995)
[4] Rančić, M., An efficient, conservative, monotonic remapping for semi-Lagrangian transport algorithms, Mon. Weather Rev., 123, 1213-1217 (1995)
[5] B. Machenhauer, M. Olk, On the development of a cell-integrated semi-lagrangian shallow water model on the sphere, in: ECMWF Workshop Proceedings: Semi-Lagrangian Methods, 1996, pp. 213-228.; B. Machenhauer, M. Olk, On the development of a cell-integrated semi-lagrangian shallow water model on the sphere, in: ECMWF Workshop Proceedings: Semi-Lagrangian Methods, 1996, pp. 213-228.
[6] Machenhauer, B.; Olk, M., The implementation of the semi-implicit scheme in cell-integrated semi-lagrangian models, (Lin, C.; Laprise, R.; Ritchie, H., Numerical Methods in Atmospheric and Oceanic Modelling - The André J. Robert Memorial Volume (1997), CMOS/NRC Research Press), 103-126
[7] B. Machenhauer, M. Olk, Design of a semi-implicit cell-integrated semi-Lagrangian model, Max Planck Institute for Meteorology Tech. Rep. 265, Hamburg, Germany, 1998, pp. 76-85.; B. Machenhauer, M. Olk, Design of a semi-implicit cell-integrated semi-Lagrangian model, Max Planck Institute for Meteorology Tech. Rep. 265, Hamburg, Germany, 1998, pp. 76-85.
[8] Priestley, A., A quasi-conservative version of the semi-Lagrangian advection scheme, Mon. Weather Rev., 121, 621-632 (1993)
[9] Nair, R. D.; Machenhauer, B., The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere, Mon. Weather Rev., 130, 649-667 (2002)
[10] Lauritzen, P. H.; Kaas, E.; Machenhauer, B., A mass-conservative semi-implicit semi-Lagrangian limited area shallow water model on the sphere, Mon. Weather Rev., 134, 1205-1221 (2006)
[11] Zerroukat, M.; Wood, N.; Staniforth, A.; White, A.; Thuburn, J., An inherently mass-conserving semi-implicit semi-lagrangian discretisation of the shallow-water equations on the sphere, Q. J. R. Meteorol. Soc., 135, 1104-1116 (2009)
[12] Thuburn, J.; Zerroukat, M.; Wood, N.; Staniforth, A., Coupling a mass conserving semi-Lagrangian scheme (SLICE) to a semi-implicit discretization of the shallow-water equations: minimizing the dependence on a reference atmosphere, Q. J. R. Meteorol. Soc., 136, 146-154 (2009)
[13] Lauritzen, P. H.; Kaas, E.; Machenhauer, B.; Lindberg, K., A mass-conservative version of the semi-implicit semi-Lagrangian HIRLAM, Q. J. R. Meteorol. Soc., 134, 1583-1595 (2008)
[14] Machenhauer, B.; Kaas, E.; Lauritzen, P. H., Finite volume methods in meteorology, (Temam, R.; Tribbia, J.; Ciarlet, P., Computational Methods for the Atmosphere and the Oceans. Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, vol. 14 (2009), Elsevier), 3-120 · Zbl 1226.86002
[15] Purser, R.; Leslie, L., An efficient interpolation procedure for high-order three-dimensional semi-Lagrangian models, Mon. Weather Rev., 119, 2492-2498 (1991)
[16] Nair, R. D.; Scroggs, J. S.; Semazzi, F. H.M., Efficient conservative global transport schemes for climate and atmospheric chemistry models, Mon. Weather Rev., 130, 2059-2073 (2002)
[17] Zerroukat, M.; Wood, N.; Staniforth, A., SLICE: a semi-Lagrangian inherently conserving and efficient scheme for transport problems, Q. J. R. Meteorol. Soc., 128, 2801-2820 (2002)
[18] Lin, S.; Rood, R., Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Weather Rev., 124, 2046-2070 (1996)
[19] Putman, W. M.; Lin, S.-J., Finite-volume transport on various cubed-sphere grids, J. Comput. Phys., 227, 55-78 (2007) · Zbl 1126.76038
[20] Zerroukat, M.; Wood, N.; Staniforth, A., A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and efficient (SLICE) scheme, Q. J. R. Meteorol. Soc., 131, 2923-2936 (2005)
[21] Zerroukat, M.; Wood, N.; Staniforth, A., Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-lagrangian transport scheme (SLICE), J. Comput. Phys., 225, 935-948 (2007) · Zbl 1343.76054
[22] Lauritzen, P. H.; Nair, R. D.; Ullrich, P. A., A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid, J. Comput. Phys. (2009) · Zbl 1329.65198
[23] Dukowicz, J., Conservative rezoning (remapping) for general quadrilateral meshes, J. Comput. Phys., 54, 411-424 (1984) · Zbl 0534.76008
[24] Dukowicz, J. K.; Baumgardner, J. R., Incremental remapping as a transport/advection algorithm, J. Comput. Phys., 160, 318-335 (2000) · Zbl 0972.76079
[25] Lipscomb, W. H.; Ringler, T. D., An incremental remapping transport scheme on a spherical geodesic grid, Mon. Weather Rev., 133, 2335-2350 (2005)
[26] W.D. Collins, P.J. Rasch, B.A. Boville, J.J. Hack, J.R. McCaa, D.L. Williamson, J.T. Kiehl, B. Briegleb, Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Tech. Note, NCAR/TN-464+STR, 2004.; W.D. Collins, P.J. Rasch, B.A. Boville, J.J. Hack, J.R. McCaa, D.L. Williamson, J.T. Kiehl, B. Briegleb, Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Tech. Note, NCAR/TN-464+STR, 2004.
[27] Lamarque, J.-F.; Kinnison, D. E.; Hess, P.; Vitt, F., Simulated lower stratospheric trends between 1970 and 2005: identifying the role of climate and composition changes, J. Geophys. Res., 113 (2008)
[28] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[29] Lin, S.-J., A ‘vertically Lagrangian’ finite-volume dynamical core for global models, Mon. Weather Rev., 132, 2293-2307 (2004)
[30] Chen, C.; Xiao, F., Shallow water model on cubed-sphere by multi-moment finite volume method, J. Comput. Phys., 227, 5019-5044 (2008) · Zbl 1388.86003
[31] Nair, R. D.; Thomas, S. J.; Loft, R. D., A discontinuous Galerkin transport scheme on the cubed sphere, Mon. Weather Rev., 133, 814-828 (2005)
[32] R.D. Nair, P.H. Lauritzen, A class of deformational flow test-cases for the advection problems on the sphere, J. Comput. Phys. (in review).; R.D. Nair, P.H. Lauritzen, A class of deformational flow test-cases for the advection problems on the sphere, J. Comput. Phys. (in review). · Zbl 1282.86012
[33] P.H. Lauritzen, P.A. Ullrich, R.D. Nair, Atmospheric transport schemes: desirable properties and a semi-Lagrangian view on finite-volume discretizations, in: Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, vol. 8, Springer, 2010, in press.; P.H. Lauritzen, P.A. Ullrich, R.D. Nair, Atmospheric transport schemes: desirable properties and a semi-Lagrangian view on finite-volume discretizations, in: Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, vol. 8, Springer, 2010, in press.
[34] Ullrich, P. A.; Lauritzen, P. H.; Jablonowski, C., Geometrically exact conservative remapping (GECoRe): regular latitude-longitude and cubed-sphere grids, Mon. Weather Rev., 137, 1721-1741 (2009)
[35] Ronchi, C.; Iacono, R.; Paolucci, P. S., The “cubed sphere: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 93-114 (1996) · Zbl 0849.76049
[36] LeVeque, R., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[37] Durran, D. D., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (1998), Springer-Verlag · Zbl 0918.76001
[38] T. Barth, D. Jespersen, The design and application of upwind schemes on unstructured meshes, in: Proc. AIAA 27th Aerospace Sciences Meeting, Reno, 1989.; T. Barth, D. Jespersen, The design and application of upwind schemes on unstructured meshes, in: Proc. AIAA 27th Aerospace Sciences Meeting, Reno, 1989.
[39] Leveque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 627-665 (1996) · Zbl 0852.76057
[40] Thuburn, J., Multidimensional flux-limited advection schemes, J. Comput. Phys., 123, 74-83 (1996) · Zbl 0840.76063
[41] Schär, C.; Smolarkiewicz, P., A synchronous and iterative flux-correction formalism for coupled transport equations, J. Comput. Phys., 128, 101-120 (1996) · Zbl 0861.76054
[42] Blossey, P.; Durran, D., Selective monotonicity preservation in scalar advection, J. Comput. Phys., 227, 5160-5183 (2008) · Zbl 1142.65069
[43] Jiang, G.; Shu, C., Efficient implementation of weighted ENO schemes, J. Comput. Phys, 126, 202-228 (1996) · Zbl 0877.65065
[44] Hill, D.; Pullin, D., Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J. Comput. Phys., 194, 435-450 (2004) · Zbl 1100.76030
[45] Williamson, D.; Drake, J.; Hack, J.; Jakob, R.; Swarztrauber, P., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211-224 (1992) · Zbl 0756.76060
[46] Colella, P.; Woodward, P. R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201 (1984) · Zbl 0531.76082
[47] Skamarock, W. C., Positive-definite and monotonic limiters for unrestricted-time-step transport schemes, Mon. Weather Rev., 134, 2241-2250 (2006)
[48] Nair, R. D.; Jablonowski, C., Moving vortices on the sphere: a test case for horizontal advection problems, Mon. Weather Rev., 136, 699-711 (2008)
[49] Lauritzen, P. H., A stability analysis of finite-volume advection schemes permitting long time steps, Mon. Weather Rev., 135, 2658-2673 (2007)
[50] Xiao, F.; Yabe, T.; Peng, X.; Kobayashi, H., Conservative and oscillation-less atmospheric transport schemes based on rational functions, J. Geophys. Res., 107, 4609 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.