×

Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE. (English) Zbl 1330.86007

Summary: Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). In this paper, we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.

MSC:

86A10 Meteorology and atmospheric physics
86-08 Computational methods for problems pertaining to geophysics
65F08 Preconditioners for iterative methods
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

CAM3; chammp

References:

[1] Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems. SIAM J. Sci. Stat. Comput. 11(3), 450-481 (1990) · Zbl 0708.65049 · doi:10.1137/0911026
[2] Carpenter, I., Archibald, R., Evans, K.J., Micikevicius, P., Larkin, J., Rsoinski, J., Schwarzmeier, J., Taylor, M.: Progress toward accelerating HOMME for hybrid multi-core architectures. Internat. J. High Perf. Comput. Appl. 27, 334-345 (2013) · doi:10.1177/1094342012462751
[3] Chacon, L.: Scalable parallel implicit solvers for 3D magnetohydrodynamics. J. Phys. Conf. Ser. 125, 12,041-12,041 (2008) · doi:10.1088/1742-6596/125/1/012041
[4] Cyr, E., Shadid, J., Tuminaro, R., Pawlowski, R., Chacon, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35(3), B701-B730 (2013) · Zbl 1273.76269 · doi:10.1137/12088879X
[5] Dennis, J., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P., Mirin, A., St.-Cyr, A., Taylor, M., Worley, P.H.: A scalable spectral element dynamical core for the community atmosphere model. Internat. J. High Perf. Comput. Appl. 26, 5-16 (2012). doi:10.1177/1094342012436965 · doi:10.1177/1094342012436965
[6] Doormaal, J.P.V., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. Part A: Appl. 7(2), 147-163 (1984) · Zbl 0553.76005
[7] ECMWF: IFS Documentation - Cy38r1, Part III: Dynamics and Numerical procedures. Tech. Rep. cy38ra. European Centre for Medium-Range Weather Forecasting. http://www.ecmwf.int/research/ifsdocs/CY38r1/IFSPart3.pdf (2012)
[8] Elman, H.C., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Sci. 227(3), 1790-1808 (2008) · Zbl 1290.76023
[9] Elman, H.C., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York. http://www.amazon.com/exec/obidos/ASIN/0198528671 (2005) · Zbl 1083.76001
[10] Evans, K., Lauritzen, P., Neale, R., Mishra, S., Taylor, M.A., Tribbia, J.: AMIP simulation with the CAM4 spectral element dynamical core. J. Clim. 26, 689-709 (2013). doi:10.1175/JCLI-D-11-00448.1 · doi:10.1175/JCLI-D-11-00448.1
[11] Evans, K.J., Knoll, D.A., Pernice, M.A.: Development of a 2-D algorithm to simulate convection and phase transition efficiently. J. Comp. Phys. 219, 404-417 (2006) · Zbl 1102.76037 · doi:10.1016/j.jcp.2006.03.025
[12] Evans, K.J., Rouson, D.W.I., Salinger, A.G., Taylor, M.A., Weijer, W., III, J.B.W.: A Scalable and Adaptable Solution Framework within Components of the Community Climate System Model. Lecture Notes in Computer Science, vol. 5545, pp. 332-341. Springer, Heidelberg (2009)
[13] Evans, K.J., Taylor, M.A., Drake, J.B.: Accuracy analysis of a spectral element atmospheric model using a fully implicit solution framework. Mon. Weather Rev. 138, 3333-3341 (2010) · doi:10.1175/2010MWR3288.1
[14] Galewsky, J., Scott, R.K., Polvani, L.M.: An initial-value problem for testing numerical models of the global shallow-water equations. Tellus 56(A), 429-440 (2004) · doi:10.1111/j.1600-0870.2004.00071.x
[15] Howle, V.E., Kirby, R.C.: Block preconditioners for finite element discretization of incompressible flow with thermal convection. Numer. Linear Algebra Appl. 19(2), 427-440 (2012) · Zbl 1274.76190 · doi:10.1002/nla.1814
[16] Jia, J., Hill, J.C., Evans, K.J., Fann, G.I., Taylor, M.A.: A spectral deferred correction method applied to the shallow water equations on a sphere. Mon. Weather Rev. 141, 3435-3449 (2013) · doi:10.1175/MWR-D-12-00048.1
[17] Lott, P.A., Elman, H.C., Evans, K.J., Li, X.S., Salinger, A.G., Woodward, C.S.: Recent progress in nonlinear and linear solvers. In: SciDAC. Denver, CO July 10-14, 2011. http://www.mcs.anl.gov/uploads/cels/papers/scidac11/final/lottaaron.pdf (2011)
[18] Neale, R.e.a.: Description of the Community Atmosphere Model (CAM 5.0). NCAR Technical Note TN-486+STR (2010) · Zbl 1102.76037
[19] Patankar, S.V.: Numerical Heat Transfer And Fluid Flow. Taylor and Francis, Bristol (1980) · Zbl 0521.76003
[20] Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15(10), 1787-1806 (1972) · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[21] Pernice, M., Tocci, M.D.: A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 23(2), 398-418 (2001) · Zbl 0995.76061 · doi:10.1137/S1064827500372250
[22] Quarteroni, A., Saleri, F., Veneziani, A.: Factorization methods for the numerical approximation of Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 188(1-3), 505-526 (2000) · Zbl 0976.76044 · doi:10.1016/S0045-7825(99)00192-9
[23] Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461-469 (1993). doi:10.1137/0914028 · Zbl 0780.65022 · doi:10.1137/0914028
[24] Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136-144 (1972) · doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2
[25] Segal, A., ur Rehman, M., Vuik, C.: Preconditioners for incompressible Navier-Stokes solvers. Numer. Math.: Theory, Methods Appl. 3(3), 245-275 (2010) · Zbl 1240.65098
[26] Taylor, M.A., Edwards, J., St.-Cyr, A.: Petascale atmospheric models for the community climate system model: new developments and evaluation of scalable dynamic cores. J. Phys. Conf. Ser. 125, 012,023 (2008) · doi:10.1088/1742-6596/125/1/012023
[27] Taylor, M.A., Edwards, J., Thomas, S., Nair, R.: A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys. Conf. Ser. 78, 012,074 (2007) · doi:10.1088/1742-6596/78/1/012074
[28] Taylor, M.A., Fournier, A.: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys. 229(17), 5879-5895 (2010) · Zbl 1425.76177 · doi:10.1016/j.jcp.2010.04.008
[29] Thomas, S.J., Dennis, J.M., Tufo, H.M., Fischer, P.F.: A Schwarz preconditioner for the cubed-sphere. SIAM J. Sci. Comput. 25(2), 442-453 (2003). doi:10.1137/S1064827502409420 · Zbl 1163.65329 · doi:10.1137/S1064827502409420
[30] Thomas, S.J., Loft, R.D.: Semi-implicit spectral element atmospheric model. J. Sci. Comput. 17, 339-350 (2002) · Zbl 1053.76053 · doi:10.1023/A:1015129420882
[31] Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211-224 (1992) · Zbl 0756.76060 · doi:10.1016/S0021-9991(05)80016-6
[32] Yang, C., Cao, J., Cai, X.C.: A fully implicit domain decomposition algorithm for shallow water equations on the cubed sphere. SIAM J. Sci. Comput. 32(1), 418-438 (2010) · Zbl 1410.76309 · doi:10.1137/080727348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.