×

Interpolation on the cubed sphere with spherical harmonics. (English) Zbl 1531.65022

Summary: We consider Lagrange interpolation with Spherical Harmonics of data located at the equiangular Cubed Sphere nodes. An approach based on a suitable Echelon Form of the associated Vandermonde matrix is carried out. As an outcome, a particular subspace of Spherical Harmonics is defined. This subspace possesses a high-frequency truncation, reminiscent of the rhomboidal truncation. Numerical results show the interest of this approach in various contexts. In particular, several examples of resolution of the Poisson equation on the sphere are displayed.

MSC:

65D05 Numerical interpolation
41A05 Interpolation in approximation theory

Software:

CAM3

References:

[1] Atkinson, K., Han, W.: Spherical harmonics and approximations on the unit sphere: an introduction. In: No. 2044 in Lect. Notes. Math. Springer (2012) · Zbl 1254.41015
[2] Bellet, JB, Symmetry group of the equiangular cubed sphere, Q. App. Math., 80, 69-86 (2022) · Zbl 1478.65093 · doi:10.1090/qam/1604
[3] Bellet, JB; Brachet, M.; Croisille, JP, Quadrature and symmetry on the cubed sphere, J. Comput. Appl. Math., 409 (2022) · Zbl 1485.65021 · doi:10.1016/j.cam.2022.114142
[4] de Boor, C.; Ron, A., Computational aspects of polynomial interpolation in several variables, Math. Comput., 58, 705-727 (1992) · Zbl 0767.41003 · doi:10.2307/2153210
[5] Bos, L., On certain configurations of points in \(\mathbf{R}^n\) which are unisolvent for polynomial interpolation, J. Approx. Theory, 64, 271-280 (1991) · Zbl 0737.41002 · doi:10.1016/0021-9045(91)90063-G
[6] Brachet, M.; Croisille, JP, Spherical shallow water simulation by a Cubed Sphere finite difference solver, Q. J. R. Met. Soc., 147, 735, 786-800 (2021) · doi:10.1002/qj.3946
[7] Cheong, HB, Double Fourier series on a sphere: applications to elliptic and vorticity equations, J. Comput. Phys., 157, 327-349 (2000) · Zbl 0961.76062 · doi:10.1006/jcph.1999.6385
[8] Collins, W.D., et al.: Description of the NCAR community atmosphere model (CAM 3.0). NCAR Technical Note TN-464+STR, NCAR (2004)
[9] Dai, F., Xu, Y.: Approximation theory and harmonic analysis on spheres and balls. In: Springer Mongraphs in Mathematics. Springer (2013) · Zbl 1275.42001
[10] Daley, R.; Bourassa, Y., Rhomboidal versus triangular spherical harmonic truncation: some verification statistics, Atmos. Ocean, 16, 2, 187-196 (2010) · doi:10.1080/07055900.1978.9649026
[11] Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. John Hopkins University Press (1996) · Zbl 0865.65009
[12] Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM (1977) · Zbl 0412.65058
[13] Izumi, S.: Introduction to algebraic theory of multivariate interpolation. In: Paunescu, L., Harris, A., Fukui, T., Koike, S. (eds.) Real and Complex singularities, pp. 85-108. World Scientific (2007) · Zbl 1125.13013
[14] Kunis, S.; Möller, H.; von der Ohe, U., Prony’s method on the sphere, SMAI J. Comput. Math., S5, 87-97 (2019) · Zbl 1478.65144 · doi:10.5802/smai-jcm.53
[15] Lorentz, R.A.: Multivariate Birkhoff interpolation. In: Lecture Notes in Math., vol. 1516, Springer (1992) · Zbl 0760.41002
[16] Machenhauer, B.: The spectral method. In: Numerical Methods used in Atmospheric Models. World Meteorological Organisation, Geneva (1979)
[17] Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (2000) · Zbl 0962.15001
[18] Nair, R.; Thomas, SJ; Loft, RD, A discontinuous Galerkin transport scheme on the Cubed Sphere, Month Weath. Rev., 133, 4, 814-828 (2005) · doi:10.1175/MWR2890.1
[19] Nasir, H., Spherical Harmonics in a non-polar co-ordinate system and application to Fourier series in \(2\)-sphere, Math. Methods Appl. Sci., 30, 1843-1854 (2007) · Zbl 1133.31004 · doi:10.1002/mma.872
[20] Purser, R.; Rančić, M., Smooth quasi-homogeneous gridding of the sphere, J. Comput. Phys., 124, 637-647 (1998)
[21] Rančić, M.; Purser, R.; Mesinger, F., A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordinates, Q. J. R. Met. Soc., 122, 959-982 (1996) · doi:10.1002/qj.49712253209
[22] Ronchi, C.; Iacono, R.; Paolucci, PS, The cubed sphere: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 93-114 (1996) · Zbl 0849.76049 · doi:10.1006/jcph.1996.0047
[23] Sadourny, R., Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Mon. Wea. Rev., 100, 136-144 (1972) · doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2
[24] Sauer, T., Polynomial interpolation of minimal degree, Numer. Math., 78, 59-85 (1997) · Zbl 0890.65008 · doi:10.1007/s002110050304
[25] Shamir, O.; Paldor, N., A Hermite-based shallow water solver for a thin ocean over a rotating sphere, J. Comput. Phys., 269, 80-97 (2014) · Zbl 1349.86028 · doi:10.1016/j.jcp.2014.03.015
[26] Thatcher, M.; McGregor, J.; Dix, M.; Katzfey, J.; Denzer, R.; Argent, RM; Schimak, G.; Hřebíček, J., A new approach for coupled regional climate modelling using more than 10,000 cores, Environmental Software Systems Infrastructures, Services and Applications, 599-607 (2015), Cham: Springer, Cham · doi:10.1007/978-3-319-15994-2_61
[27] Thomas, SJ; Dennis, J.; Tufo, H.; Fisher, PF, A Schwarz preconditionner for the cubed sphere, SIAM J. Sci. Comput., 25, 2, 442-453 (2003) · Zbl 1163.65329 · doi:10.1137/S1064827502409420
[28] Ullrich, PA; Jablonowski, C.; van Leer, B., High order finite-volume methods for the shallow-water equations on the sphere, J. Comput. Phys., 229, 6104-6134 (2010) · Zbl 1425.76168 · doi:10.1016/j.jcp.2010.04.044
[29] Yee, Y., Solution of Poisson’s equation on a sphere by truncated double Fourier series, Mon. Weath. Rev., 109, 501-501 (1981) · doi:10.1175/1520-0493(1981)109<0501:SOPEOA>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.