×

Conic optimization: a survey with special focus on copositive optimization and binary quadratic problems. (English) Zbl 1516.90043

Summary: A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed convex cone. Prominent examples are linear programs (LP), second order cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight the connections between nonconvex quadratic problems, binary quadratic problems, and copositive optimization. We review how tight bounds can be obtained by relaxing the copositivity constraint to semidefiniteness, and we discuss the effect that different modelling techniques have on the quality of the bounds. We also provide some new techniques for lifting linear constraints and show how these can be used for stable set and coloring relaxations.

MSC:

90C22 Semidefinite programming
90C20 Quadratic programming
90C27 Combinatorial optimization

References:

[1] Afonin, A.; Hildebrand, R.; Dickinson, P. J.C., The extreme rays of the \(6 \times 6\) copositive cone, J. Glob. Optim., 79, 1, 153-190 (2021) · Zbl 1465.90066
[2] Ahmadi, A. A.; Majumdar, A., DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization, SIAM J. Appl. Algebra Geom., 3, 2, 193-230 (2019) · Zbl 1465.90061
[3] ISMP 2000, Part 3 (Atlanta, GA) · Zbl 1153.90522
[4] Aloise, D.; Hansen, P., A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering, Pesqui. Operacional, 29, 3, 503-516 (2009)
[5] Andreani, R.; Haeser, G.; Viana, D. S., Optimality conditions and global convergence for nonlinear semidefinite programming, Math. Program., 180, 1-2, Series A, 203-235 (2020) · Zbl 1434.90121
[6] Anjos, M. F.; Emine, Y.; Lodi, A.; Sun, Z., A note on the Lasserre hierarchy for different formulations of the maximum independent set problem, Oper. Res. Lett., 49, 1, 30-34 (2021) · Zbl 1525.90412
[7] (Anjos, M. F.; Lasserre, J. B., Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, 166 (2012), Springer, New York) · Zbl 1235.90002
[8] Arima, N.; Kim, S.; Kojima, M., A quadratically constrained quadratic optimization model for completely positive cone programming, SIAM J. Optim., 23, 4, 2320-2340 (2013) · Zbl 1304.90152
[9] Atamtürk, A.; Narayanan, V., Cuts for conic mixed-integer programming, Integer Programming and Combinatorial Optimization. Integer Programming and Combinatorial Optimization, Lecture Notes in Computing Science, 4513, 16-29 (2007), Springer, Berlin · Zbl 1136.90518
[10] Bai, L.; Mitchell, J. E.; Pang, J.-S., On conic QPCCs, conic QCQPs and completely positive programs, Math. Program., 159, 1-2, Series A, 109-136 (2016) · Zbl 1346.90624
[11] Bao, X.; Sahinidis, N. V.; Tawarmalani, M., Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons, Math. Program., 129, 1, Series B, 129-157 (2011) · Zbl 1232.49035
[12] Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A., Robust Optimization, Princeton series in applied mathematics (2009), Princeton University Press, Princeton, NJ · Zbl 1221.90001
[13] Ben-Tal, A.; Nemirovski, A., Lectures on Modern Convex Optimization, MPS/SIAM Series on Optimization (2001), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA · Zbl 0986.90032
[14] Berman, A.; Dür, M.; Shaked-Monderer, N., Open problems in the theory of completely positive and copositive matrices, Electron. J. Linear Algebra, 29, 46-58 (2015) · Zbl 1326.15048
[15] Berman, A.; Shaked-Monderer, N., Completely Positive Matrices (2003), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1030.15022
[16] Billionnet, A.; Roupin, F., A deterministic approximation algorithm for the densest \(k\)-subgraph problem, Int. J. Oper. Res., 3, 3, 301-314 (2008) · Zbl 1138.05322
[17] Bomze, I. M., Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained quadratic optimization problems, SIAM J. Optim., 25, 3, 1249-1275 (2015) · Zbl 1317.90224
[18] Bomze, I. M.; Cheng, J.; Dickinson, P. J.C.; Lisser, A., A fresh CP look at mixed-binary QPs: new formulations and relaxations, Math. Program., 166, 1-2, Series A, 159-184 (2017) · Zbl 1386.90097
[19] Bomze, I. M.; De Klerk, E., Solving standard quadratic optimization problems via linear, semidefinite and copositive programming, J. Glob. Optim., 24, 2, 163-185 (2002) · Zbl 1047.90038
[20] Bomze, I. M.; Dür, M.; de Klerk, E.; Roos, C.; Quist, A. J.; Terlaky, T., On copositive programming and standard quadratic optimization problems, J. Glob. Optim., 18, 4, 301-320 (2000) · Zbl 0970.90057
[21] Bomze, I. M.; Jarre, F., A note on Burer’s copositive representation of mixed-binary QPs, Optim. Lett., 4, 3, 465-472 (2010) · Zbl 1200.90134
[22] Borwein, J.; Wolkowicz, H., Facial reduction for a cone-convex programming problem, J. Aust. Math. Soc. Ser. A, 30, 3, 369-380 (1981) · Zbl 0464.90086
[23] Borwein, J.; Wolkowicz, H., Regularizing the abstract convex program, J. Math. Anal. Appl., 83, 2, 495-530 (1981) · Zbl 0467.90076
[24] Buchheim, C.; Traversi, E., On the separation of split inequalities for non-convex quadratic integer programming, Discret. Optim., 15, 1-14 (2015) · Zbl 1308.90120
[25] Bundfuss, S.; Dür, M., An adaptive linear approximation algorithm for copositive programs, SIAM J. Optim., 20, 1, 30-53 (2009) · Zbl 1187.90187
[26] Burer, S., On the copositive representation of binary and continuous nonconvex quadratic programs, Math. Program., 120, 2, Series A, 479-495 (2009) · Zbl 1180.90234
[27] Burer, S., Optimizing a polyhedral-semidefinite relaxation of completely positive programs, Math. Program. Comput., 2, 1, 1-19 (2010) · Zbl 1190.90135
[28] Burer, S., Copositive programming, Handbook on Semidefinite, Conic and Polynomial Optimization. Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research and Management Science, 166, 201-218 (2012), Springer, New York · Zbl 1334.90098
[29] Burer, S.; Dong, H., Representing quadratically constrained quadratic programs as generalized copositive programs, Oper. Res. Lett., 40, 3, 203-206 (2012) · Zbl 1245.90080
[30] Burer, S.; Letchford, A. N., Unbounded convex sets for non-convex mixed-integer quadratic programming, Math. Program., 143, 1-2, Series A, 231-256 (2014) · Zbl 1291.90146
[31] Chen, J.-S.; Pan, S.; Ko, C.-H., A continuation approach for the capacitated multi-facility Weber problem based on nonlinear SOCP reformulation, J. Glob. Optim., 50, 4, 713-728 (2011) · Zbl 1279.90133
[32] Chvátal, V., A greedy heuristic for the set-covering problem, Math. Oper. Res., 4, 3, 233-235 (1979) · Zbl 0443.90066
[33] DeCorte, E.; de Oliveira Filho, F. M.; Vallentin, F., Complete positivity and distance-avoiding sets, Math. Program. (2021), OnlineFirst
[34] Dickinson, P. J.C., Geometry of the copositive and completely positive cones, J. Math. Anal. Appl., 380, 1, 377-395 (2011) · Zbl 1229.90195
[35] Dickinson, P. J.C.; Eichfelder, G.; Povh, J., Erratum to: On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets, Optim. Lett., 7, 6, 1387-1397 (2013) · Zbl 1298.90063
[36] Dickinson, P. J.C.; Gijben, L., On the computational complexity of membership problems for the completely positive cone and its dual, Comput. Optim. Appl., 57, 2, 403-415 (2014) · Zbl 1330.90103
[37] Dobre, C.; Dür, M.; Frerick, L.; Vallentin, F., A copositive formulation for the stability number of infinite graphs, Math. Program., 160, 1-2, Series A, 65-83 (2016) · Zbl 1361.05091
[38] Dobre, C.; Vera, J., Exploiting symmetry in copositive programs via semidefinite hierarchies, Math. Program., 151, 2, Series B, 659-680 (2015) · Zbl 1328.90110
[39] Dong, H., Symmetric tensor approximation hierarchies for the completely positive cone, SIAM J. Optim., 23, 3, 1850-1866 (2013) · Zbl 1291.90129
[40] Drewes, S.; Pokutta, S., Symmetry-exploiting cuts for a class of mixed-0/1 second-order cone programs, Discret. Optim., 13, 23-35 (2014) · Zbl 1308.90109
[41] Drewes, S.; Ulbrich, S., Subgradient based outer approximation for mixed integer second order cone programming, Mixed Integer Nonlinear Programming. Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and its Applications, 154, 41-59 (2012), Springer, New York · Zbl 1242.90130
[42] Dür M., 2010. Copositive programming – a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (Eds.), Recent Advances in Optimization and its Applications in Engineering. Springer.
[43] Dür, M.; Jargalsaikhan, B.; Still, G., Genericity results in linear conic programming—a tour d’horizon, Math. Oper. Res., 42, 1, 77-94 (2017) · Zbl 1359.90093
[44] Eichfelder, G.; Jahn, J., Set-semidefinite optimization, J. Convex Anal., 15, 4, 767-801 (2008) · Zbl 1172.90013
[45] Eichfelder, G.; Povh, J., On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets, Optim. Lett., 7, 6, 1373-1386 (2013) · Zbl 1298.90064
[46] Escoffier, B.; Hammer, P. L., Approximation of the quadratic set cover problem, Discret. Optim., 4, 3, 378-386 (2007) · Zbl 1157.90484
[47] Faybusovich, L., Several Jordan-algebraic aspects of optimization, Optimization, 57, 3, 379-393 (2008) · Zbl 1191.90034
[48] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 3-5, 75-174 (2010)
[49] Gally, T.; Pfetsch, M. E.; Ulbrich, S., A framework for solving mixed-integer semidefinite programs, Optim. Methods Softw., 33, 3, 594-632 (2018) · Zbl 1398.90109
[50] Goemans, M. X.; Williamson, D. P., Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42, 6, 1115-1145 (1995) · Zbl 0885.68088
[51] Góez, J. C.; Anjos, M. F., Second-order cone optimization formulations for service system design problems with congestion, Modeling and Optimization: Theory and Applications. Modeling and Optimization: Theory and Applications, Springer Proceedings in Mathematics & Statistics, 279, 97-120 (2019), Springer, Cham · Zbl 1421.90074
[52] Gouveia, J.; Pong, T. K.; Saee, M., Inner approximating the completely positive cone via the cone of scaled diagonally dominant matrices, J. Glob. Optim., 76, 2, 383-405 (2020) · Zbl 1435.90114
[53] Gvozdenović, N.; Laurent, M., The operator \(\Psi\) for the chromatic number of a graph, SIAM J. Optim., 19, 2, 572-591 (2008) · Zbl 1213.05080
[54] Håstad, J., Clique is hard to approximate within \(n^{1 - \epsilon}\), Acta Math., 182, 1, 105-142 (1999) · Zbl 0989.68060
[55] Helmberg, C., Semidefinite programming, Eur. J. Oper. Res., 137, 3, 461-482 (2002) · Zbl 1008.90044
[56] Helmberg, C.; Overton, M. L.; Rendl, F., The spectral bundle method with second-order information, Optim. Methods Softw., 29, 4, 855-876 (2014) · Zbl 1306.90118
[57] Helmberg, C.; Rendl, F., A spectral bundle method for semidefinite programming, SIAM J. Optim., 10, 3, 673-696 (2000) · Zbl 0960.65074
[58] Hochbaum, D. S., Approximation algorithms for the set covering and vertex cover problems, SIAM J. Comput., 11, 3, 555-556 (1982) · Zbl 0486.68067
[59] Hu, H.; Sotirov, R., On solving the quadratic shortest path problem, INFORMS J. Comput., 32, 2, 219-233 (2020) · Zbl 1451.90018
[60] Jarre, F., Burer’s key assumption for semidefinite and doubly nonnegative relaxations, Optim. Lett., 6, 3, 593-599 (2012) · Zbl 1257.90067
[61] de Klerk, E., Exploiting special structure in semidefinite programming: a survey of theory and applications, Eur. J. Oper. Res., 201, 1, 1-10 (2010) · Zbl 1177.90315
[62] de Klerk, E.; Pasechnik, D. V., Approximation of the stability number of a graph via copositive programming, SIAM J. Optim., 12, 4, 875-892 (2002) · Zbl 1035.90058
[63] de Klerk, E.; Roos, C.; Terlaky, T., Initialization in semidefinite programming via a self-dual skew-symmetric embedding, Oper. Res. Lett., 20, 5, 213-221 (1997) · Zbl 0881.90096
[64] Kobayashi, K.; Takano, Y., A branch-and-cut algorithm for solving mixed-integer semidefinite optimization problems, Comput. Optim. Appl., 75, 2, 493-513 (2020) · Zbl 1440.90031
[65] Kocvara, M.; Stingl, M., PENNON: software for linear and nonlinear matrix inequalities, Handbook on Semidefinite, Conic and Polynomial Optimization. Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research and Management Science, 166, 755-791 (2012), Springer, New York · Zbl 1334.90108
[66] Kuang, X.; Zuluaga, L. F., Completely positive and completely positive semidefinite tensor relaxations for polynomial optimization, J. Glob. Optim., 70, 3, 551-577 (2018) · Zbl 1403.90554
[67] Kuryatnikova, O., Vera, J. C., 2018. Positive semidefinite approximations to the cone of copositive kernels. ArXiv Preprint No. 1812.00274.
[68] Kuryatnikova, O.; Vera Lizcano, J. C., Approximating the cone of copositive kernels to estimate the stability number of infinite graphs, LAGOS’17—IX Latin and American Algorithms, Graphs and Optimization. LAGOS’17—IX Latin and American Algorithms, Graphs and Optimization, Electronic Notes in Discrete Mathematics, 62, 303-308 (2017), Elsevier Science B.V., Amsterdam · Zbl 1383.05220
[69] Lasserre, J.B., 2010. Moments, Positive Polynomials and Their Applications. Imperial College Press Optimization Series, 1. Imperial College Press, London. · Zbl 1211.90007
[70] Lasserre, J. B., New approximations for the cone of copositive matrices and its dual, Math. Program., 144, 1-2, Series A, 265-276 (2014) · Zbl 1292.15034
[71] Lasserre, J. B., A MAX-CUT formulation of 0/1 programs, Oper. Res. Lett., 44, 2, 158-164 (2016) · Zbl 1408.90222
[72] Laurent, M., Sums of squares, moment matrices and optimization over polynomials, Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications, 149, 157-270 (2009), Springer, New York · Zbl 1163.13021
[73] Laurent, M.; Piovesan, T., Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone, SIAM J. Optim., 25, 4, 2461-2493 (2015) · Zbl 1329.15066
[74] Li, Y., Xie, W., 2020. Exact and approximation algorithms for sparse PCA. ArXiv Preprint No. 2008.12438.
[75] Lisser, A.; Rendl, F., Graph partitioning using linear and semidefinite programming, Math. Program., 95, 1, Series B, 91-101 (2003) · Zbl 1030.90079
[76] Lobo, M. S.; Vandenberghe, L.; Boyd, S.; Lebret, H., Applications of second-order cone programming, Linear Algebra Appl., 284, 1-3, 193-228 (1998) · Zbl 0946.90050
[77] Lovász, L., On the Shannon capacity of a graph, IEEE Trans. Inf. Theory, 25, 1, 1-7 (1979) · Zbl 0395.94021
[78] Lovász, L.; Schrijver, A., Cones of matrices and set-functions and 0-1 optimization, SIAM J. Optim., 1, 2, 166-190 (1991) · Zbl 0754.90039
[79] Lund, C.; Yannakakis, M., On the hardness of approximating minimization problems, J. Assoc. Comput. Mach., 41, 5, 960-981 (1994) · Zbl 0814.68064
[80] Malick, J.; Roupin, F., Solving \(k\)-cluster problems to optimality with semidefinite programming, Math. Program., 136, 2, Series B, 279-300 (2012) · Zbl 1257.90068
[81] Maxfield, J. E.; Minc, H., On the matrix equation \(X^\prime X = A\), Proc. Edinburgh Math. Soc. (2), 13, 125-129 (1962/63) · Zbl 0112.25101
[82] Mittelmann, H. D., Decision tree for optimization software (2021), . http://plato.asu.edu/guide.html
[83] Mosek, The Mosek modeling cookbook (2021-10-11), . http://docs.mosek.com/MOSEKModelingCookbook-a4paper.pdf
[84] Motzkin, T. S.; Straus, E. G., Maxima for graphs and a new proof of a theorem of Turán, Can. J. Math., 17, 533-540 (1965) · Zbl 0129.39902
[85] Murty, K. G.; Kabadi, S. N., Some NP-complete problems in quadratic and nonlinear programming, Math. Program., 39, 2, 117-129 (1987) · Zbl 0637.90078
[86] Nesterov, Y.; Nemirovski, A., Conic formulation of a convex programming problem and duality, Optim. Methods Softw., 1, 2, 95-115 (1992)
[87] Nesterov, Y.; Nemirovskii, A., Interior-Point Polynomial Algorithms in Convex Programming, SIAM Studies in Applied Mathematics, 13 (1994), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0824.90112
[88] Oliveira, D. E.; Wolkowicz, H.; Xu, Y., ADMM for the SDP relaxation of the QAP, Math. Program. Comput., 10, 4, 631-658 (2018) · Zbl 1411.90258
[89] Pardalos, P. M.; Rendl, F.; Wolkowicz, H., The quadratic assignment problem: a survey and recent developments, Quadratic Assignment and Related Problems (New Brunswick, NJ, 1993). Quadratic Assignment and Related Problems (New Brunswick, NJ, 1993), DIMACS Series Discrete Mathematics and Theoretical Computer Science, 16, 1-42 (1994), American Mathematical Society, Providence, RI · Zbl 0817.90059
[90] Pardalos, P. M.; Vavasis, S. A., Quadratic programming with one negative eigenvalue is NP-hard, J. Glob. Optim., 1, 1, 15-22 (1991) · Zbl 0755.90065
[91] Parrilo, P., 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. California Institute of Technology Ph.D. thesis.
[92] Pataki, G., Strong duality in conic linear programming: facial reduction and extended duals, Computational and Analytical Mathematics. Computational and Analytical Mathematics, Springer Proceedings in Mathematics & Statistics, 50, 613-634 (2013), Springer, New York · Zbl 1282.90231
[93] Pataki, G., Characterizing bad semidefinite programs: normal forms and short proofs, SIAM Rev., 61, 4, 839-859 (2019) · Zbl 1430.90459
[94] Peña, J.; Vera, J.; Zuluaga, L. F., Computing the stability number of a graph via linear and semidefinite programming, SIAM J. Optim., 18, 1, 87-105 (2007) · Zbl 1176.90611
[95] Peña, J.; Vera, J. C.; Zuluaga, L. F., Completely positive reformulations for polynomial optimization, Math. Program., 151, 2, Series B, 405-431 (2015) · Zbl 1328.90114
[96] Pólya, G., Über positive Darstellung von Polynomen, Vierteljahresschr. Naturforschenden Ges. Zürich, 73, 141-145 (1928) · JFM 54.0138.01
[97] Povh, J.; Rendl, F., Copositive and semidefinite relaxations of the quadratic assignment problem, Discret. Optim., 6, 3, 231-241 (2009) · Zbl 1167.90597
[98] Preisig, J. C., Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints, SIAM J. Control Optim., 34, 4, 1135-1150 (1996) · Zbl 0853.90105
[99] Quist, A. J.; De Klerk, E.; Roos, C.; Terlaky, T., Copositive relaxation for general quadratic programming, Optim. Methods Softw., 9, 1-3, 185-208 (1998) · Zbl 0904.90126
[100] Ramana, M. V., An exact duality theory for semidefinite programming and its complexity implications, Math. Program., 77, 2, Series B, 129-162 (1997) · Zbl 0890.90144
[101] Renegar, J., A Mathematical View of Interior-Point Methods in Convex Optimization, MPS/SIAM Series on Optimization (2001), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA · Zbl 0986.90075
[102] Schrijver, A., A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inf. Theory, 25, 4, 425-429 (1979) · Zbl 0444.94009
[103] Shor, N. Z., Quadratic optimization problems, Soviet J. Comput. Syst. Sci., 25, 111 (1987) · Zbl 0655.90055
[104] Szegedy, M., A note on the \(\theta\) number of Lovász and the generalized Delsarte bound, Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 20-22 November 1994, Santa Fe, New Mexico, USA, 36-39 (1994), IEEE
[105] Vandenberghe, L.; Boyd, S., Semidefinite programming, SIAM Rev., 38, 1, 49-95 (1996) · Zbl 0845.65023
[106] Vinel, A.; Krokhmal, P. A., Polyhedral approximations in \(p\)-order cone programming, Optim. Methods Softw., 29, 6, 1210-1237 (2014) · Zbl 1306.90155
[107] Wen, Z.; Goldfarb, D.; Yin, W., Alternating direction augmented Lagrangian methods for semidefinite programming, Math. Program. Comput., 2, 3-4, 203-230 (2010) · Zbl 1206.90088
[108] Xia, W.; Zuluaga, L. F., Completely positive reformulations of polynomial optimization problems with linear constraints, Optim. Lett., 11, 7, 1229-1241 (2017) · Zbl 1408.90246
[109] Yamashita, H.; Yabe, H., A survey of numerical methods for nonlinear semidefinite programming, J. Oper. Res. Soc. Jpn., 58, 1, 24-60 (2015) · Zbl 1367.65092
[110] Yang, L.; Sun, D.; Toh, K.-C., \( \text{SDPNAL} +\): a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Program. Comput., 7, 3, 331-366 (2015) · Zbl 1321.90085
[111] Yanıkoğlu, I.; Gorissen, B. L.; den Hertog, D., A survey of adjustable robust optimization, Eur. J. Oper. Res., 277, 3, 799-813 (2019) · Zbl 1430.90537
[112] Yıldırım, E. A., On the accuracy of uniform polyhedral approximations of the copositive cone, Optim. Methods Softw., 27, 1, 155-173 (2012) · Zbl 1247.90215
[113] Yıldırım, E. A., Inner approximations of completely positive reformulations of mixed binary quadratic programs: a unified analysis, Optim. Methods Softw., 32, 6, 1163-1186 (2017) · Zbl 1386.90110
[114] Yurtsever, A.; Tropp, J. A.; Fercoq, O.; Udell, M.; Cevher, V., Scalable semidefinite programming, SIAM J. Math. Data Sci., 3, 1, 171-200 (2021) · Zbl 1470.90068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.