×

The SIAM 100-Digit Challenge: a decade later. Inspirations, ramifications, and other eddies left in its wake. (English) Zbl 1341.65001

Summary: In 2002, L.N. Trefethen of Oxford University challenged the scientific community by ten intriguing mathematical problems to be solved, numerically, to ten digit accuracy each (I was one of the successful contestants; in 2004, jointly with three others of them, I published a book [F. Bornemann et al., The SIAM 100-digit challenge. A study in high-accuracy numerical computing. With a foreword by David H. Bailey. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) (2004; Zbl 1060.65002)] on the manifold ways of solving those problems). In this paper, I collect some new and noteworthy insights and developments that have evolved around those problems in the last decade or so. In the course of my tales, I will touch mathematical topics as diverse as divergent series, Ramanujan summation, low-rank approximations of functions, hybrid numeric-symbolic computation, singular moduli, self-avoiding random walks, the Riemann prime counting function, and winding numbers of planar Brownian motion. As was already the intention of the book, I hope to encourage the reader to take a broad view of mathematics, since one lasting moral of Trefethen’s contest is that overspecialization will provide too narrow a view for one with a serious interest in computation.

MSC:

65-03 History of numerical analysis
40A05 Convergence and divergence of series and sequences
40D05 General theorems on summability
41A29 Approximation with constraints
68W30 Symbolic computation and algebraic computation
60G50 Sums of independent random variables; random walks
11A41 Primes
60J65 Brownian motion

Citations:

Zbl 1060.65002
Full Text: DOI

References:

[1] Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25(5), 1743-1770 (2004) · Zbl 1057.65003 · doi:10.1137/S1064827503430126
[2] Berndt, B.C.: Ramanujan’s Notebooks. Part I. Springer, New York (1985) · Zbl 0555.10001 · doi:10.1007/978-1-4612-1088-7
[3] Berndt, B.C.: Ramanujan’s Notebooks. Part V. Springer, New York (1998) · Zbl 0886.11001 · doi:10.1007/978-1-4612-1624-7
[4] Berndt, B.C., Rankin, R.A.: Ramanujan: Letters and Commentary. Am. Math. Soc., Providence (1995) · Zbl 0842.01026
[5] Bornemann, F.: Solution of a problem posed by Jörg Waldvogel. Unpublished note, www-m3.ma.tum.de/bornemann/RiemannRZero.pdf (2003)
[6] Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. Society for Industrial and Applied Mathematics, Philadelphia (2004) · Zbl 1060.65002 · doi:10.1137/1.9780898717969
[7] Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: Vom Lösen numerischer Probleme. Springer, Berlin (2006). (German edition of [6]) · Zbl 1158.65001
[8] Borwein, J.M.: Book review: the SIAM 100-digit challenge. Math. Intell. 27(4), 40-48 (2005) · doi:10.1007/BF02985860
[9] Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1998) · Zbl 0903.11001
[10] Brassesco, S., García Pire, S.C.: On the density of the winding number of planar Brownian motion. J. Theor. Probab. 27(3), 899-914 (2014) · Zbl 1310.60115 · doi:10.1007/s10959-012-0462-z
[11] Butzer, P.L., Ferreira, P.J.S.G., Schmeisser, G., Stens, R.L.: The summation formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis. Results Math. 59(3-4), 359-400 (2011) · Zbl 1225.65007 · doi:10.1007/s00025-010-0083-8
[12] Candelpergher, B., Coppo, M.A., Delabaere, E.: La sommation de Ramanujan. Enseign. Math. 43(1-2), 93-132 (1997) · Zbl 0884.40008
[13] Clisby, N.: Efficient implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 140(2), 349-392 (2010) · Zbl 1197.82057 · doi:10.1007/s10955-010-9994-8
[14] Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(WW\) function. Adv. Comput. Math. 5(4), 329-359 (1996) · Zbl 0863.65008 · doi:10.1007/BF02124750
[15] Costin, O.: Asymptotics and Borel Summability. CRC Press, Boca Raton (2009) · Zbl 1169.34001
[16] Dixon, J.D.: Exact solution of linear equations using p \(p\)-adic expansions. Numer. Math. 40(1), 137-141 (1982) · Zbl 0492.65016 · doi:10.1007/BF01459082
[17] Dumas, J.-G., Turner, W., Wan, Z.: Exact solution to large sparse integer linear systems. Abstract for ECCAD’2002 (2002) · Zbl 1162.65012
[18] Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edn. Wiley, New York (1971) · Zbl 0219.60003
[19] Gauss, C.F.: Werke. Band III. Georg Olms Verlag, Hildesheim (1973). Reprint of the 1866 original
[20] Gautschi, W.: The numerical evaluation of a challenging integral. Numer. Algorithms 49(1-4), 187-194 (2008) · Zbl 1162.65012 · doi:10.1007/s11075-008-9157-z
[21] Guttmann, A.J., Kennedy, T.: Self-avoiding walks in a rectangle. J. Eng. Math. 84, 201-208 (2014) · Zbl 1367.65016 · doi:10.1007/s10665-013-9622-0
[22] Hale, N., Trefethen, L.N.: Chebfun and numerical quadrature. Sci. China Math. 55(9), 1749-1760 (2012) · Zbl 1257.41018 · doi:10.1007/s11425-012-4474-z
[23] Hardy, G.H.: Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Cambridge University Press, Cambridge (1940) · JFM 67.0002.09
[24] Hardy, G.H.: Divergent Series. Oxford University Press, Oxford (1949) · Zbl 0032.05801
[25] Havil, J.: Gamma. Princeton University Press, Princeton (2003) · Zbl 1023.11001
[26] Jagger, G., The making of logarithm tables, 49-77 (2003), Oxford · Zbl 1091.01009 · doi:10.1093/acprof:oso/9780198508410.003.0003
[27] Kalugin, G.A., Jeffrey, D.J., Corless, R.M.: Bernstein, Pick, Poisson and related integral expressions for Lambert \(WW\). Integral Transforms Spec. Funct. 23(11), 817-829 (2012) · Zbl 1255.30039 · doi:10.1080/10652469.2011.640327
[28] Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. World Scientific, Hackensack (2009) · Zbl 1169.81001 · doi:10.1142/7305
[29] Lawler, G. F.; Schramm, O.; Werner, W., On the scaling limit of planar self-avoiding walk, 339-364 (2004), Providence · Zbl 1069.60089 · doi:10.1090/pspum/072.2/2112127
[30] Lenstra, A.K., Lenstra, H.W. Jr., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515-534 (1982) · Zbl 0488.12001 · doi:10.1007/BF01457454
[31] Lindelöf, E.: Le calcul des résidus. Gauthier-Villars, Paris (1905) · JFM 36.0468.01
[32] Longman, I.M.: Note on a method for computing infinite integrals of oscillatory functions. Proc. Camb. Philos. Soc. 52, 764-768 (1956) · Zbl 0072.33803 · doi:10.1017/S030500410003187X
[33] Mansuy, R., Yor, M.: Aspects of Brownian Motion. Springer, Berlin (2008) · Zbl 1162.60022 · doi:10.1007/978-3-540-49966-4
[34] M��rters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010) · Zbl 1243.60002 · doi:10.1017/CBO9780511750489
[35] Nienhuis, B.; Kager, W., Stochastic Löwner evolution and the scaling limit of critical models, 425-467 (2009), Dordrecht · Zbl 1180.82033 · doi:10.1007/978-1-4020-9927-4_15
[36] Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974) · Zbl 0303.41035
[37] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) · Zbl 1198.00002
[38] Ramanujan, S.: Notebooks, Vol. II. Tata Institute of Fundamental Research, Bombay (1957) · Zbl 0138.24201
[39] Ramis, J.-P.: Séries divergentes et théories asymptotiques. Bull. Soc. Math. Fr. 121(suppl.), 74 (1993) · Zbl 0830.34045
[40] Riesel, H., Göhl, G.: Some calculations related to Riemann’s prime number formula. Math. Comput. 24, 969-983 (1970) · Zbl 0217.03202
[41] Runge, C., König, H.: Vorlesungen über numerisches Rechnen. Springer, Berlin (1924) · JFM 50.0361.05 · doi:10.1007/978-3-642-99089-2
[42] Sadovskii, M.V.: Quantum Field Theory. De Gruyter, Berlin (2013) · Zbl 1267.81003 · doi:10.1515/9783110270358
[43] Schmelzer, T., Baillie, R.: Summing a curious, slowly convergent series. Am. Math. Mon. 115(6), 525-540 (2008) · Zbl 1165.40003
[44] Shi, Z., Liminf behaviours of the windings and Lévy’s stochastic areas of planar Brownian motion, 122-137 (1994), Berlin · Zbl 0810.60076 · doi:10.1007/BFb0073841
[45] Strang, G.: Learning from 100 numbers. Science 307(5709), 521-522 (2005) · doi:10.1126/science.1108288
[46] Townsend, A., Trefethen, L.N.: An extension of Chebfun to two dimensions. SIAM J. Sci. Comput. 35(6), C495-C518 (2013) · Zbl 1300.65010 · doi:10.1137/130908002
[47] Trefethen, L.N.: Ten digit algorithms. A.R. Mitchell Lecture, 2005 Dundee Biennial Conf. on Numer. Anal., people.maths.ox.ac.uk/trefethen/essays.html (2005)
[48] Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci. 1(1), 9-19 (2007) · Zbl 1145.41302 · doi:10.1007/s11786-007-0001-y
[49] Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385-458 (2014) · Zbl 1307.65031 · doi:10.1137/130932132
[50] Van Deun, J., Cools, R.: Algorithm 858: computing infinite range integrals of an arbitrary product of Bessel functions. ACM Trans. Math. Softw. 32(4), 580-596 (2006) · Zbl 1230.65027 · doi:10.1145/1186785.1186790
[51] Wan, Z.: An algorithm to solve integer linear systems exactly using numerical methods. J. Symb. Comput. 41, 621-632 (2006) · Zbl 1145.65025 · doi:10.1016/j.jsc.2005.11.001
[52] Watson, G.N.: Theorems stated by Ramanujan. VIII: theorems on divergent series. J. Lond. Math. Soc. 4, 82-86 (1929) · JFM 55.0220.02
[53] Watson, G.N.: Theorems stated by Ramanujan. XII: a singular modulus. J. Lond. Math. Soc. 6, 65-70 (1931) · Zbl 0001.14601 · doi:10.1112/jlms/s1-6.1.65
[54] Weber, H.: Elliptische Functionen und algebraische Zahlen. Vieweg, Braunschweig (1891) · JFM 23.0455.01
[55] Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54-62 (1986) · Zbl 0607.65015 · doi:10.1109/TIT.1986.1057137
[56] Wittgenstein, L.: On Certainty. Blackwell Sci., Oxford (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.