×

Continuation and bifurcation in nonlinear PDEs - algorithms, applications, and experiments. (English) Zbl 1490.35002

The author explains the application of arc-length continuation and the detection of bifurcation points, as well as computing the bifurcating branches for a system of equations with emphasis on partial differential equations, which by discretization lead to a large system of algebraic equations or ordinary differential equations.
As demonstration for the power of these method, he presents the solutions of different demanding problems, that were obtained using the software package pde2path, which was developed by the author. These problems include pattern formation in a 2-component system, pattern formation on a circular disk and pattern formation for a system with “dead core” properties. All these problems display a rich variety of solution patterns and continuation paths.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35B32 Bifurcations in context of PDEs
35B36 Pattern formations in context of PDEs
35B60 Continuation and prolongation of solutions to PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65-04 Software, source code, etc. for problems pertaining to numerical analysis

References:

[1] Angenent, S. B.; Mallet-Paret, J.; Peletier, L. A., Stable transition layers in a semilinear boundary value problem, J. Differ. Equ., 67, 2, 212-242 (1987) · Zbl 0634.35041
[2] Avitabile, D.; Lloyd, D. J.B.; Burke, J.; Knobloch, E.; Sandstede, B., To snake or not to snake in the planar Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 9, 3, 704-733 (2010) · Zbl 1200.37014
[3] Barrett, J. W.; Wood, P. A., The finite element approximation of a coupled reaction-diffusion problem with non-Lipschitz nonlinearities, Numer. Math., 71, 2, 135-157 (1995) · Zbl 0834.65107
[4] Bergeon, A.; Burke, J.; Knobloch, E.; Mercader, I., Eckhaus instability and homoclinic snaking, Phys. Rev. E, 78 (2008)
[5] Bollhöfer, M.: ILUPACK V2.4 (2011). www.icm.tu-bs.de/ bolle/ilupack/
[6] Breden, M.; Kuehn, C.; Soresina, C., On the influence of cross-diffusion in pattern formation, J. Comput. Dyn., 8, 2, 213-240 (2021) · Zbl 1469.35202
[7] Burke, J.; Knobloch, E., Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E, 73 (2006) · Zbl 1236.35144
[8] Burke, J.; Knobloch, E., Homoclinic snaking: structure and stability, Chaos, 17, 3 (2007) · Zbl 1163.37317
[9] Carter, P.; Rademacher, J. D.M.; Sandstede, B., Pulse replication and accumulation of eigenvalues, SIAM J. Math. Anal., 53, 3, 3520-3576 (2021) · Zbl 1490.35034
[10] Chapman, S. J.; Kozyreff, G., Exponential asymptotics of localised patterns and snaking bifurcation diagrams, Physica D, 238, 319-354 (2009) · Zbl 1156.37321
[11] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015
[12] Cross, M.; Greenside, H., Pattern Formation and Dynamics in Nonequilibrium Systems (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1177.82002
[13] Cross, M. C.; Hohenberg, P. C., Pattern formation outside equilibrium, Rev. Mod. Phys., 65, 854-1190 (1993) · Zbl 1371.37001
[14] Dankowicz, H.; Schilder, F., Recipes for Continuation (2013), Philadelphia: SIAM, Philadelphia · Zbl 1277.65037
[15] De Wit, A.; Lima, D.; Dewel, G.; Borckmans, P., Spatiotemporal dynamics near codimension-two point, Phys. Rev. E, 54, 1, 261-271 (1996)
[16] de Witt, H., Dohnal, T., Rademacher, J.D.M., Uecker, H., Wetzel, D.: pde2path - Quickstart guide and reference card (2020)
[17] Decker, D.; Keller, H. B., Multiple limit point bifurcation, J. Math. Anal. Appl., 75, 2, 417-430 (1980) · Zbl 0452.47075
[18] Delgado, M.; Suárez, A., On the existence of dead cores for degenerate Lotka-Volterra models, Proc. R. Soc. Edinb. A, 130, 4, 743-766 (2000) · Zbl 0957.35054
[19] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29, 141-164 (2003) · Zbl 1070.65574
[20] di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P., Piecewise-Smooth Dynamical Systems (2008), London: Springer, London · Zbl 1146.37003
[21] di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P.; Nordmark, A. B.; Olivar Tost, G.; Piiroinen, P. T., Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50, 4, 629-701 (2008) · Zbl 1168.34006
[22] Díaz, J. I.; Hernández, J.; Mancebo, F. J., Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl., 352, 1, 449-474 (2009) · Zbl 1173.35055
[23] Dijkstra, H. A.; Wubs, F. W.; Cliffe, A. K.; Doedel, E.; Dragomirescu, I.; Eckhardt, B.; Gelfgat, A. Y.; Hazel, A. L.; Lucarini, V.; Salinger, A. G.; Phipps, E. T.; Sanchez-Umbria, J.; Schuttelaars, H.; Tuckerman, L. S.; Thiele, U., Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys., 15, 1-45 (2014) · Zbl 1373.76026
[24] Doedel, E. J., Lecture Notes on Numerical Analysis of Nonlinear Equations, Numerical Continuation Methods for Dynamical Systems, 1-49 (2007), Dordrecht: Springer, Dordrecht · Zbl 1130.65119
[25] Doedel, E., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang AUTO, X.: Continuation and bifurcation software for ordinary differential equations (with HomCont) (1997). http://indy.cs.concordia.ca/auto/
[26] Ehstand, N., Kuehn, C., Soresina, C.: Numerical continuation for fractional PDEs: sharp teeth and bloated snakes (2020) · Zbl 1471.65138
[27] Ermentrout, B., Simulating, Analyzing, and Animating Dynamical Systems (2002), Philadelphia: SIAM, Philadelphia · Zbl 1003.68738
[28] Fairgrieve, T. F.; Jepson, A. D., O. K. Floquet multipliers, SIAM J. Numer. Anal., 28, 5, 1446-1462 (1991) · Zbl 0737.65065
[29] Friedman, A.; Phillips, D., The free boundary of a semilinear elliptic equation, Trans. Am. Math. Soc., 282, 1, 153-182 (1984) · Zbl 0552.35079
[30] García-Melián, J.; Rossi, J.; Sabina de Lis, J., A bifurcation problem governed by the boundary condition. II, Proc. Lond. Math. Soc. (3), 94, 1, 1-25 (2007) · Zbl 1151.35037
[31] Golubitsky, M.; Stewart, I., The Symmetry Perspective (2002), Basel: Birkhäuser, Basel · Zbl 1031.37001
[32] Govaerts, W., Numerical Methods for Bifurcations of Dynamical Equilibria (2000), Philadelphia: SIAM, Philadelphia · Zbl 0935.37054
[33] Hazel, A., Heil, M.: oomph-lib (2017). http://oomph-lib.maths.man.ac.uk/doc/html
[34] Hoyle, R. B., Pattern Formation (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1087.00001
[35] Jensen, K. E., A MATLAB script for solving 2D/3D miminum compliance problems using anisotropic mesh adaptation, 26th International Meshing Roundtable, 102-114 (2017)
[36] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, Application of bifurcation theory, 359-384 (1977) · Zbl 0581.65043
[37] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems (1987), Berlin: Springer, Berlin
[38] Keller, H. B.; Langford, W. F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Ration. Mech. Anal., 48, 83-108 (1972) · Zbl 0249.47058
[39] Knobloch, E., Spatially localized structures in dissipative systems: open problems, Nonlinearity, 21, T45-T60 (2008) · Zbl 1139.35002
[40] Knobloch, E., Spatial localization in dissipative systems, Annu. Rev. Condens. Matter Phys., 6, 325-359 (2015)
[41] Kolokolnikov, Th.; Paquin-Lefebvre, F.; Ward, M. J., Competition instabilities of spike patterns for the 1D Gierer-Meinhardt and Schnakenberg models are subcritical, Nonlinearity, 34, 1, 273-312 (2021) · Zbl 1456.35013
[42] Kressner, D., An efficient and reliable implementation of the periodic QZ algorithm, IFAC Workshop on Periodic Control Systems (2001)
[43] Kuehn, C., Scaling of saddle-node bifurcations: degeneracies and rapid quantitative changes, J. Phys. A, 42, 4 (2009) · Zbl 1200.37042
[44] Kuehn, C.; Soresina, C., Numerical continuation for a fast-reaction system and its cross-diffusion limit, SN Partial Differ. Equ. Appl., 1 (2020) · Zbl 1451.35237
[45] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2004), New York: Springer, New York · Zbl 1082.37002
[46] Le Berre, M.; Petrescu, A. S.; Ressayre, E.; Tallet, A., Daisy patterns in the passive ring cavity with diffusion effects, Opt. Commun., 123, 810-824 (1996)
[47] Lee, S.-Y.; Wang, S.-H.; Ye, C.-P., Explicit necessary and sufficient conditions for the existence of a dead core solution of a \(p\)-Laplacian steady-state reaction-diffusion problem, Discrete Contin. Dyn. Syst., suppl, 587-596 (2005) · Zbl 1141.35381
[48] Leine, R. I., Bifurcations of equilibria in non-smooth continuous systems, Phys. D, 223, 1, 121-137 (2006) · Zbl 1111.34034
[49] Lust, K., Improved numerical Floquet multipliers, Int. J. Bifurc. Chaos, 11, 9, 2389-2410 (2001) · Zbl 1091.65510
[50] Makarenkov, O.; Lamb, J., Dynamics and bifurcations of nonsmooth systems: a survey, Phys. D, 241, 22, 1826-1844 (2012)
[51] Mazzia, F.; Trigiante, D., A hybrid mesh selection strategy based on conditioning for boundary value ODE problems, Numer. Algorithms, 36, 2, 169-187 (2004) · Zbl 1050.65072
[52] Meijer, H.; Dercole, F.; Oldeman, B., Numerical bifurcation analysis, Mathematics of Complexity and Dynamical Systems. Vols. 1-3, 1172-1194 (2012), New York: Springer, New York
[53] Meixner, M.; De Wit, A.; Bose, S.; Schöll, E., Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations, Phys. Rev. E, 55, 6, 6690-6697 (1997)
[54] Nochetto, R. H., Sharp \(L^{\infty }\)-error estimates for semilinear elliptic problems with free boundaries, Numer. Math., 54, 3, 243-255 (1988) · Zbl 0663.65125
[55] Ophaus, L.; Knobloch, E.; Gurevich, S. V.; Thiele, U., Two-dimensional localized states in an active phase-field-crystal model, Phys. Rev. E, 103, 3 (2021)
[56] Pismen, L. M., Patterns and Interfaces in Dissipative Dynamics (2006), Berlin: Springer, Berlin · Zbl 1098.37001
[57] Pomeau, Y., Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica D, 23, 3-11 (1986)
[58] Prüfert, U.: OOPDE (2021). https://tu-freiberg.de/fakult1/nmo/pruefert
[59] Salinger, A.: LOCA (2016). www.cs.sandia.gov/LOCA/
[60] Sánchez, J.; Net, M., Numerical continuation methods for large-scale dissipative dynamical systems, Eur. Phys. J. Spec. Top., 225, 2465-2486 (2016)
[61] Schneider, G.; Uecker, H., Nonlinear PDE - A Dynamical Systems Approach (2017), Providence: Am. Math. Soc., Providence · Zbl 1402.35001
[62] Siero, E., Resolving soil and surface water flux as drivers of pattern formation in Turing models of dryland vegetation: a unified approach, Phys. D, 414 (2020) · Zbl 1481.35366
[63] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, 1, 319-328 (1977)
[64] Teixeira, E. V., Regularity for the fully nonlinear dead-core problem, Math. Ann., 364, 3-4, 1121-1134 (2016) · Zbl 1336.35195
[65] Tuckerman, L. S., Computational challenges of nonlinear systems, Emerging Frontiers in Nonlinear Science, 249-277 (2020), Berlin: Springer, Berlin
[66] Tzou, J. C.; Xie, S.; Kolokolnikov, T.; Ward, M. J., The stability and slow dynamics of localized spot patterns for the 3-D Schnakenberg reaction-diffusion model, SIAM J. Appl. Dyn. Syst., 16, 1, 294-336 (2017) · Zbl 1434.35019
[67] Uecker, H., Hopf bifurcation and time periodic orbits with pde2path – algorithms and applications, Commun. Comput. Phys., 25, 3, 812-852 (2019) · Zbl 07417517
[68] Uecker, H., Numerical Continuation and Bifurcation in Nonlinear PDEs (2021), Philadelphia: SIAM, Philadelphia · Zbl 07417714
[69] Uecker, H.: Optimal spatial patterns in feeding, fishing and pollution. DCDS-S (2021)
[70] Uecker, H.: pde2path with higher order finite elements (2021). Available at [73]
[71] Uecker, H.: pde2path without finite elements (2021). Available at [73]
[72] Uecker, H., Supplementary information for this paper (2021)
[73] Uecker, H.: (2021). www.staff.uni-oldenburg.de/hannes.uecker/pde2path
[74] Uecker, H.; Wetzel, D., Numerical results for snaking of patterns over patterns in some 2D Selkov-Schnakenberg reaction-diffusion systems, SIAM J. Appl. Dyn. Syst., 13, 1, 94-128 (2014) · Zbl 1297.65162
[75] Uecker, H.; Wetzel, D., Snaking branches of planar BCC fronts in the 3D Brusselator, Physica D, 406 (2020) · Zbl 1492.35150
[76] Uecker, H.; Wetzel, D.; Rademacher, J. D.M., pde2path – a Matlab package for continuation and bifurcation in 2D elliptic systems, Numer. Math., Theory Methods Appl., 7, 58-106 (2014) · Zbl 1313.65311
[77] Ulbrich, M., Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces (2011), Philadelphia: SIAM, Philadelphia · Zbl 1235.49001
[78] Upmann, T.; Uecker, H.; Hammann, L.; Blasius, B., Optimal stock enhancement activities for a spatially distributed renewable resource, J. Econ. Dyn. Control, 123 (2021) · Zbl 1475.91243
[79] Veltz, R.: BifurcationKit.jl (2020). https://hal.archives-ouvertes.fr/hal-02902346
[80] Verschueren, N.: Pattern formation on a finite disk using the SH35 equation (2021). https://nverschueren.bitbucket.io/sh35p2p.html. Online tutorial
[81] Verschueren, N.; Knobloch, E.; Uecker, H., Localized and extended patterns in the cubic-quintic Swift-Hohenberg equation on a disk, Phys. Rev. E, 104 (2021)
[82] Wong, T.; Ward, M., Weakly nonlinear analysis of peanut-shaped deformations for localized spots of singularly perturbed reaction-diffusion systems, SIAM J. Appl. Dyn. Syst., 19, 3, 2030-2058 (2020) · Zbl 1472.35026
[83] Woolley, T. E.; Krause, A. L.; Gaffney, E. A., Bespoke Turing systems, Bull. Math. Biol., 83, 5, 41 (2021) · Zbl 1460.92028
[84] Yang, L.; Dolnik, M.; Zhabotinsky, A. M.; Epstein, I. R., Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117, 15, 7259-7265 (2002)
[85] Zeidler, E., Nonlinear Functionalanalysis I (1989), Berlin: Springer, Berlin
[86] Zhao, L.-X.; Zhang, K.; Siteur, K.; Li, X.-Z.; Liu, Q.-X.; van de Koppel, J., Fairy circles reveal the resilience of self-organized salt marshes, Sci. Adv., 7 (2021)
[87] Zhen, M., Numerical Bifurcation Analysis for Reaction-Diffusion Equations (2000), Berlin: Springer, Berlin · Zbl 0952.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.