×

Ordinal methods: concepts, applications, new developments, and challenges – in memory of Karsten Keller (1961–2022). (English) Zbl 07860416


MSC:

37M10 Time series analysis of dynamical systems
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
94A17 Measures of information, entropy
94A15 Information theory (general)
37B10 Symbolic dynamics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37B40 Topological entropy
01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Keller, Karsten

Software:

ordpy
Full Text: DOI

References:

[1] Amigó, J. M.; Keller, K.; Kurths, J., Recent progress in symbolic dynamics and permutation complexity—Ten years of permutation entropy, Eur. Phys. J. Special Topics, 222, 241-247 (2013) · doi:10.1140/epjst/e2013-01839-6
[2] Bandt, C.; Pompe, B., Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88, 174102 (2002) · doi:10.1103/PhysRevLett.88.174102
[3] Keller, K., Orthoposets of extreme points and quantum logics, Rep. Math. Phys., 27, 169-178 (1989) · Zbl 0712.03048 · doi:10.1016/0034-4877(89)90003-7
[4] Keller, K.; Lauffer, H., Symbolic analysis of high-dimensional time series, Int. J. Bifurcation Chaos, 13, 2657-2668 (2003) · Zbl 1046.37054 · doi:10.1142/S0218127403008168
[5] Denker, M., General iterated function systems: Hausdorff dimension, Chaos, 33, 033118 (2023) · Zbl 07881906 · doi:10.1063/5.0136663
[6] Amigó, J. M.; Keller, K., Permutation entropy: One concept, two approaches, Eur. Phys. J. Special Topics, 222, 263-273 (2013) · doi:10.1140/epjst/e2013-01840-1
[7] Amigó, J. M.; Keller, K.; Unakafova, V., Ordinal symbolic analysis and its applications to biomedical recordings, Phil. Trans. R. Soc. A, 373, 20140091 (2015) · Zbl 1353.37022 · doi:10.1098/rsta.2014.0091
[8] Amigó, J. M.; Keller, K.; Unakafova, V., On entropy, entropy-like quantities and applications, Discrete Contin. Dyn. Syst. B, 20, 3301-3343 (2015) · Zbl 1359.37012 · doi:10.3934/dcdsb.2015.20.3301
[9] Rosso, O. A.; Martin, M. T.; Figliola, A.; Keller, K.; Plastino, A., EEG analysis using wavelet-based information tools, J. Neuroscie. Meth., 153, 163-182 (2006) · doi:10.1016/j.jneumeth.2005.10.009
[10] Bandt, C., Statistics and contrasts of order patterns in univariate time series, Chaos, 33, 033124 (2023) · Zbl 07881912 · doi:10.1063/5.0132602
[11] Weiß, C. H., Non-parametric tests for serial dependence in time series based on asymptotic implementations of ordinal-pattern statistics, Chaos, 32, 093107 (2022) · Zbl 07878938 · doi:10.1063/5.0094943
[12] Amigó, J. M., Permutation Complexity in Dynamical Systems (2010), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1197.37001
[13] Zanin, M.; Zunino, L.; Rosso, O. A.; Papo, D., Permutation entropy and its main biomedical and econophysics applications: A review, Entropy, 14, 1553-1577 (2012) · Zbl 1314.94033 · doi:10.3390/e14081553
[14] Leyva, I.; Martinez, J.; Massoller, C.; Rosso, O. A.; Zanin, M., 20 years of ordinal patterns: Perspectives and challenges, Eur. Phys. Lett., 138, 31001 (2022) · doi:10.1209/0295-5075/ac6a72
[15] Abarbanel, H. D. I., Analysis of Observed Chaotic Data (1996), Springer-Verlag: Springer-Verlag, New York · Zbl 0890.93006
[16] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis (2002), Cambridge University Press: Cambridge University Press, Cambridge
[17] Kolmogorov, A. N., A new metric invariant for transitive dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk., USSR 119, 861-864 (1958) · Zbl 0083.10602
[18] Sinai, Y. G., On the concept of entropy for a dynamical system, Dokl. Akad. Nauk., USSR 124, 768-771 (1959) · Zbl 0086.10102
[19] Pesin, Y., Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys, 32, 54-114 (1977) · Zbl 0383.58011 · doi:10.1070/RM1977v032n04ABEH001639
[20] Ledrappier, F.; Young, L.-S., The metric entropy of diffeomorphisms. Part II: Relations between entropy, exponents and dimension, Ann. Math., 122, 540-574 (1985) · Zbl 1371.37012 · doi:10.2307/1971329
[21] Osborne, A. R.; Provenzale, A., Finite correlation dimension for stochastic systems with power-law spectra, Physica D, 35, 357-381 (1989) · Zbl 0671.60030 · doi:10.1016/0167-2789(89)90075-4
[22] Myers, A.; Khasawneh, F. A., On the automatic parameter selection for permutation entropy, Chaos, 30, 033130 (2020) · doi:10.1063/1.5111719
[23] Rosso, O. A.; Larrondo, H. A.; Martín, M. T.; Plastino, A.; Fuentes, M. A., Distinguishing noise from chaos, Phys. Rev. Lett., 99, 154102 (2007) · doi:10.1103/PhysRevLett.99.154102
[24] Rosso, O. A.; Olivares, F.; Plastino, A., Noise versus chaos in a causal Fisher-Shannon plane, Papers Phys., 7, 070006 (2015) · doi:10.4279/pip.070006
[25] Shannon, C.; Weaver, W., The Mathematical Theory of Communication (1949), University of Illinois Press: University of Illinois Press, Champaign · Zbl 0041.25804
[26] Bandt, C.; Keller, G.; Pompe, B., Entropy of interval maps via permutations, Nonlinearity, 15, 1595-602 (2002) · Zbl 1026.37027 · doi:10.1088/0951-7715/15/5/312
[27] Unakafov, A. M.; Keller, K., Conditional entropy of ordinal patterns, Physica D, 269, 94-102 (2014) · Zbl 1286.37069 · doi:10.1016/j.physd.2013.11.015
[28] Keller, K.; Unakafov, A. M.; Unakafova, V. A., Ordinal patterns, entropy, and EEG, Entropy, 16, 6212 (2014) · doi:10.3390/e16126212
[29] Gutjahr, T.; Keller, K., Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts, Discrete Continuous Dyn. Syst., 39, 4207-4224 (2019) · Zbl 1423.37041 · doi:10.3934/dcds.2019170
[30] Khinchin, A. I., Mathematical Foundations of Information Theory (1957), Dover: Dover, New York · Zbl 0088.10404
[31] Amigó, J. M.; Balogh, S. G.; Hernández, S., A brief review of generalized entropies, Entropy, 20, 813 (2018) · doi:10.3390/e20110813
[32] Gutjahr, T.; Keller, K., On Rényi permutation entropy, Entropy, 24, 37 (2022) · doi:10.3390/e24010037
[33] Zunino, L.; Perez, D. G.; Kowalski, A.; Martín, M. T.; Garavaglia, M.; Plastino, A.; Rosso, O. A., Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy, Physica A, 387, 6057-6068 (2008) · Zbl 1221.60051 · doi:10.1016/j.physa.2008.07.004
[34] Fisher, R. A., On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. Ser. A, 222, 309 (1922) · JFM 48.1280.02 · doi:10.1098/rsta.1922.0009
[35] Sánchez-Moreno, P., Yáñez, R. J., and Dehesa, J. S., “Discrete densities and Fisher information,” in Proceedings of the 14th International Conference on Difference Equations and Applications, edited by M. Bohner et al. (UǧurBahçeşehir University Publishing Company, Istanbul, 2009), p. 291. · Zbl 1173.94402
[36] Berger, S.; Kravtsiv, A.; Schneider, G.; Jordan, D., Teaching ordinal patterns to a computer: Efficient encoding algorithms based on the Lehmer code, Entropy, 21 (2019) · doi:10.3390/e21101023
[37] Martín, M. T.; Platino, A.; Rosso, O. A., Generalized statistical complexity measures: Geometrical and analytical properties, Physica A, 369, 439-462 (2006) · doi:10.1016/j.physa.2005.11.053
[38] Zunino, L.; Soriano, M. C.; Rosso, O. A., Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach, Phys. Rev. E, 86, 046210 (2012) · doi:10.1103/PhysRevE.86.046210
[39] Kottlarz, I.; Parlitz, U., Ordinal pattern-based complexity analysis of high-dimensional chaotic time series, Chaos, 33, 053105 (2023) · Zbl 1540.94032 · doi:10.1063/5.0147219
[40] Pessa, A. A. B.; Ribeiro, H. V., Ordpy: A Python package for data analysis with permutation entropy and ordinal network methods, Chaos, 31, 063110 (2021) · Zbl 1465.62006 · doi:10.1063/5.0049901
[41] Rosso, O. A.; Carpi, L. C.; Saco, P. M.; Ravetti, M. G.; Plastino, A.; Larrondo, H. A.; Plastino, A., The Amigó paradigm of forbidden/missing patterns: A detailed analysis, Eur. Phys. J. B, 85, 419 (2012) · doi:10.1140/epjb/e2012-30307-8
[42] Amigó, J. M.; Kocarev, L.; Szczepanski, J., Order patterns and chaos, Phys. Lett. A, 355, 27-31 (2006) · doi:10.1016/j.physleta.2006.01.093
[43] Amigó, J. M.; Zambrano, S.; Sanjuán, M. A. F., True and false forbidden patterns in deterministic and random dynamics, Europhys. Lett., 79, 50001 (2007) · doi:10.1209/0295-5075/79/50001
[44] Amigó, J. M.; Zambrano, S.; Sanjuán, M. A. F., Combinatorial detection of determinism in noisy time series, Europhys. Lett., 83, 60005 (2008) · doi:10.1209/0295-5075/83/60005
[45] Amigó, J. M.; Kennel, M. B., Topological permutation entropy, Physica D, 231, 137-142 (2007) · Zbl 1124.37007 · doi:10.1016/j.physd.2007.04.010
[46] Amigó, J. M.; Kennel, M. B., Forbidden ordinal patterns in higher dimensional dynamics, Physica D, 237, 2893-2899 (2008) · Zbl 1153.37309 · doi:10.1016/j.physd.2008.05.003
[47] Carpi, L. C.; Saco, P. M.; Rosso, O. A., Missing ordinal patterns in correlated noises, Physica A, 389, 2020-2029 (2010) · doi:10.1016/j.physa.2010.01.030
[48] Wold, H., A Study in the Analysis of Stationary Time Series (1938), Almqvist and Wiksell: Almqvist and Wiksell, Upsala · JFM 64.1200.02
[49] Cambanis, S.; Hardin, C. D.; Weron, A., Innovations and Wold decompositions of stable sequences, Probab. Th. Rel. Fields, 79, 1-27 (1988) · doi:10.1007/BF00319099
[50] Barà, C.; Sparacino, L.; Pernice, R.; Antonacci, Y.; Porta, A.; Kugiumtzis, D.; Faes, L., Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions, Chaos, 33, 033127 (2023) · doi:10.1063/5.0140641
[51] Guisande, N.; Pallares Di Nunzio, M.; Martinez, N.; Rosso, O. A.; Montani, F., Chaotic dynamics of the Henon map and neuronal input-output: A comparison with neurophysiological data, Chaos, 33, 043111 (2023) · doi:10.1063/5.0142773
[52] Lehnertz, K., Ordinal methods for a characterization of evolving functional brain networks, Chaos, 33, 022101 (2023) · doi:10.1063/5.0136181
[53] Martinez Coq, P. E.; Rey, A. A.; Rosso, O. A.; Armentano, R.; Legnani, W. E., Detection of cardiac arrhythmia patterns in ECG through \(\operatorname{H} \times \operatorname{C}\) plane, Chaos, 32, 123118 (2022) · doi:10.1063/5.0118717
[54] de Carvalho Barreto, I. D.; Stosic, T.; Menezes, R.; da Silva, A. S. A.; Rosso, O. A.; Stosic, B., Hydrological changes caused by the construction of dams and reservoirs: The CECP analysis, Chaos, 33, 023115 (2023) · doi:10.1063/5.0135352
[55] Iaconis, F. R.; Trujillo Jiménez, M. A.; Gasaneo, G.; Rosso, O. A.; Delrieux, C., Ordinal pattern transition networks in eye tracking reading signals, Chaos, 33, 053101 (2023) · doi:10.1063/5.0142230
[56] Martínez, J. H.; Ramasco, J. J.; Zanin, M., On the complementarity of ordinal patterns-based entropy and time asymmetry metrics, Chaos, 33, 033138 (2023) · Zbl 07881926 · doi:10.1063/5.0136471
[57] Mateos, D. M.; Riveaud, L.; Lamberti, P. W., Rao-Burbea centroids applied to the statistical characterisation of time series and images through ordinal patterns, Chaos, 33, 033144 (2023) · Zbl 07881932 · doi:10.1063/5.0136240
[58] Sánchez, D.; Zunino, L.; De Gregorio, J.; Toral, R.; Mirasso, C., Ordinal analysis of lexical patterns, Chaos, 33, 033121 (2023) · doi:10.1063/5.0139852
[59] Baba, K.; Kishiya, S.; Gotoda, H.; Shoji, T.; Yoshida, S., Early detection of combustion instability in a staged single-sector combustor for aircraft engines using symbolic dynamics-based approach, Chaos, 33, 073101 (2023) · doi:10.1063/5.0140854
[60] Du, M.; Wei, J.; Li, M.-Y.; Gao, Z.-K.; Kurths, J., Interconnected ordinal pattern complex network for characterizing the spatial coupling behavior of gas-liquid two-phase flow, Chaos, 33, 063108 (2023) · doi:10.1063/5.0146259
[61] Amigó, J. M.; Dale, R.; Tempesta, P., Permutation group entropy: A new route to complexity for real-valued processes, Chaos, 32, 112101 (2022) · Zbl 07879605 · doi:10.1063/5.0113335
[62] Bienaymè, I. J., Application d’un théorème nouveau du calcul des probabilités, Bull. Sci. Math. Astron., 9, 219-225 (1875)
[63] Marwan, N.; Braun, T., Power spectral estimate for discrete data, Chaos, 33, 053118 (2023) · doi:10.1063/5.0143224
[64] Olivares, F.; Zunino, L.; Zanin, M., Markov-modulated model for landing flow dynamics: An ordinal analysis validation, Chaos, 33, 033142 (2023) · doi:10.1063/5.0134848
[65] Shahriari, Z.; Algar, S. D.; Walker, D.; Small, M., Ordinal Poincaré sections: Reconstructing the first return map from an ordinal segmentation of time series, Chaos, 33, 053109 (2023) · Zbl 07858559 · doi:10.1063/5.0141438
[66] Djeufa Dagoumguei, M.; Tagne, S.; Eyebe Fouda, J. S. A.; Koepf, W., System dynamics monitoring using PIC micro-controller-based PLS, Chaos, 33, 073118 (2023) · doi:10.1063/5.0136234
[67] Stosic, D.; Stosic, D.; Stosic, T.; Stosic, B., Generalized weighted permutation entropy, Chaos, 32, 103105 (2022) · Zbl 07879575 · doi:10.1063/5.0107427
[68] Zanin, M., Continuous ordinal patterns: Creating a bridge between ordinal analysis and deep learning, Chaos, 33, 033114 (2023) · Zbl 07881902 · doi:10.1063/5.0136492
[69] Chagas, E. T. C.; Frery, A. C.; Gambini, J.; Lucini, M.; Ramos, H. S.; Rey, A. A., Statistical properties of the entropy from ordinal patterns, Chaos, 32, 113118 (2022) · Zbl 07879623 · doi:10.1063/5.0118706
[70] Cánovas, J. S.; Guillamón, A.; Ruiz-Abellón, M. C., A new coding system to test independence of time series, Chaos, 33, 013122 (2023) · Zbl 07880564 · doi:10.1063/5.0132097
[71] Rios de Sousa, A. M. Y.; Hlinka, J., Assessing serial dependence in ordinal patterns processes using chi-squared tests with application to EEG data analysis, Chaos, 32, 073126 (2022) · Zbl 07874236 · doi:10.1063/5.0096954
[72] Haruna, T., Complexity of couplings in multivariate time series via ordinal persistent homology, Chaos, 33, 043115 (2023) · Zbl 07861059 · doi:10.1063/5.0136772
[73] Small, M., “Complex networks from time series: Capturing dynamics,” in 2013 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2013), pp. 2509-2512.
[74] Monetti, R.; Bunk, W.; Aschenbrenner, T.; Jamitzky, F., Characterizing synchronization in time series using information measures extracted from symbolic representations, Phys. Rev. E, 79, 046207 (2009) · doi:10.1103/PhysRevE.79.046207
[75] Amigó, J. M.; Monetti, R.; Aschenbrenner, T.; Bunk, W., Transcripts: An algebraic approach to coupled time series, Chaos, 22, 013105 (2012) · Zbl 1331.37118 · doi:10.1063/1.3673238
[76] Bandt, C.; Wittfeld, K., Two new parameters for the ordinal analysis of images, Chaos, 33, 043124 (2023) · doi:10.1063/5.0136912
[77] Muñoz-Guillermo, M., Multiscale two-dimensional permutation entropy to analyze encrypted images, Chaos, 33, 013112 (2023) · Zbl 07880554 · doi:10.1063/5.0130538
[78] Ribeiro, H. V.; Zunino, L.; Lenzi, E. K.; Santoro, P. A.; Mendes, R. S., Complexity-entropy causality plane as a complexity measure for two dimensional patterns, PLoS One, 7, e40689 (2012) · doi:10.1371/journal.pone.0040689
[79] Bandt, C., Small order patterns in big time series: A practical guide, Entropy, 21, 613 (2019) · doi:10.3390/e21060613
[80] Zunino, L.; Olivares, F.; Ribeiro, H. V.; Rosso, O. A., Permutation Jensen-Shannon distance: A versatile and fast symbolic tool for complex time-series analysis, Phys. Rev. E, 105, 045310 (2022) · doi:10.1103/PhysRevE.105.045310
[81] Azami, H.; Escudero, J., Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings, Biomed. Signal Process., 23, 28-41 (2016) · doi:10.1016/j.bspc.2015.08.004
[82] Morel, C.; Humeau-Heurtier, A., Multiscale permutation entropy for two-dimensional patterns, Pattern Recog. Lett., 150, 139-146 (2021) · doi:10.1016/j.patrec.2021.06.028
[83] Fadlallah, B.; Chen, B.; Keil, A.; Príncipe, J., Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, Phys. Rev. E, 87, 022911 (2013) · doi:10.1103/PhysRevE.87.022911
[84] Yin, Y.; Shang, P., Weighted multiscale permutation entropy of financial time series, Nonlinear Dyn., 78, 2921-2939 (2014) · doi:10.1007/s11071-014-1636-2
[85] Bandt, C., A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure, Entropy, 19, 197 (2017) · doi:10.3390/e19050197
[86] Zhang, J.; Small, M., Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett., 96, 238701 (2006) · doi:10.1103/PhysRevLett.96.238701
[87] Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J. C., From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. U.S.A., 105, 4972-4975 (2008) · Zbl 1205.05162 · doi:10.1073/pnas.0709247105
[88] Freitas, C. G. S.; Aquino, A. L. L.; Ramos, H.; Frery, A. C.; Rosso, O. A., A detailed characterization of complex networks using information theory, Sci. Rep., 9, 16689 (2019) · doi:10.1038/s41598-019-53167-5
[89] Edelsbrunner, H.; Harer, J., Persistent homology—A survey, Contemp. Math, 453, 257-282 (2008) · Zbl 1145.55007
[90] Lum, P. Y.; Singh, G.; Lehman, A.; Ishkanov, T.; Vejdemo-Johansson, M.; Alagappan, M.; Carlsson, J.; Carlsson, G., Extracting insights from the shape of complex data using topology, Sci. Rep., 3, 1236 (2013) · doi:10.1038/srep01236
[91] McCullough, M.; Small, M.; Stemler, T.; Iu, H. H. C., Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems, Chaos, 25, 053101 (2015) · Zbl 1374.37106 · doi:10.1063/1.4919075
[92] McCullough, M.; Small, M.; Iu, H. H. C.; Stemler, T., Multiscale ordinal network analysis of human cardiac dynamics, Philos. Trans. R. Soc. Lond. A, 375, 20160292 (2017) · Zbl 1404.92064 · doi:10.1098/rsta.2016.0292
[93] Monetti, R.; Bunk, W.; Aschenbrenner, T.; Springer, S.; Amigó, J. M., Information directionality in coupled time series using transcripts, Phys. Rev. E, 88, 022911 (2013) · doi:10.1103/PhysRevE.88.022911
[94] Gutjahr, T.; Keller, K., Generalized ordinal patterns and the KS-entropy, Entropy, 23, 1097 (2021) · doi:10.3390/e23081097
[95] Monetti, R.; Amigó, J. M.; Aschenbrenner, T.; Bunk, W., Permutation complexity of interacting dynamical systems, Eur. Phys. J. Special Topics, 222, 421-436 (2013) · doi:10.1140/epjst/e2013-01850-y
[96] Amigó, J. M.; Monetti, R.; Graff, B.; Graff, G., Computing algebraic transfer entropy and coupling directions via transcripts, Chaos, 26, 113115 (2016) · Zbl 1378.62054 · doi:10.1063/1.4967803
[97] Gutjahr, T.; Hale, S.; Keller, K.; Blum, P.; Winter, S., Quantification of fracture roughness by change probabilities and Hurst exponents, Math. Geosci., 54, 679-710 (2022) · Zbl 1495.86013 · doi:10.1007/s11004-021-09985-3
[98] Chagas, E. T. C.; Frery, A. C.; Rosso, O. A.; Ramos, H. S., Analysis and classification of SAR textures using information theory, IEEE J. Select. Topics Appl. Earth Observat. Remote Sensing, 14, 663-675 (2021) · doi:10.1109/JSTARS.2020.3031918
[99] Zunino, L.; Ribeiro, H. V., Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane, Chaos Soliton. Fract., 91, 679-688 (2016) · Zbl 1372.94377 · doi:10.1016/j.chaos.2016.09.005
[100] Bandt, C.; Shiha, F., Order patterns in time series, J. Time Ser. Anal., 28, 646-665 (2007) · Zbl 1150.62037 · doi:10.1111/j.1467-9892.2007.00528.x
[101] Matilla-García, M.; Ruiz Marín, M., A non-parametric independence test using permutation entropy, J. Econometr., 144, 139-155 (2008) · Zbl 1418.62200 · doi:10.1016/j.jeconom.2007.12.005
[102] Cánovas, J. S.; Guillamón, A.; Ruíz, M. C., Using permutations to detect dependence between time series, Physica D, 240, 1199-1204 (2011) · Zbl 1218.62088 · doi:10.1016/j.physd.2011.04.010
[103] Weiß, C. H.; Ruiz Marín, M.; Keller, K.; Matilla-García, M., Non-parametric analysis of serial dependence in time series using ordinal patterns, Comput. Stat. Data Anal., 168, 107381 (2022) · Zbl 07476363 · doi:10.1016/j.csda.2021.107381
[104] Chagas, E. T. C.; Quiroz-Oliveira, M.; Rosso, O. A.; Ramos, H.; Freitas, C. G. S.; Frery, A. C., White noise test from ordinal patterns in the entropy-complexity plane, Int. Statist. Rev., 90, 374-396 (2022) · Zbl 1532.62044 · doi:10.1111/insr.12487
[105] Amigó, J. M.; Kennel, M. B.; Kocarev, L., The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D, 210, 77-95 (2005) · Zbl 1149.37300 · doi:10.1016/j.physd.2005.07.006
[106] Haruna, T.; Nakajima, K., Permutation complexity via duality between values and orderings, Physica D, 240, 1370-1377 (2011) · Zbl 1223.37012 · doi:10.1016/j.physd.2011.05.019
[107] Hirata, Y.; Sato, Y.; Faranda, D., Permutations uniquely identify states and unknown external forces in non-autonomous dynamical systems, Chaos, 26, 123104 (2016) · Zbl 1456.37091 · doi:10.1063/5.0009450
[108] Hirata, Y.; Amigó, J. M., A review of symbolic dynamics and symbolic reconstruction of dynamical systems, Chaos, 33, 052101 (2023) · Zbl 07858550 · doi:10.1063/5.0146022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.