×

Generalized Frobenius partitions, Motzkin paths, and Jacobi forms. (English) Zbl 1523.11087

The subject of the paper under review is the study of so-called generalized Frobenius partitions (or simply F-partitions) in \(k\)-colors as introduced by G. E. Andrews [Generalized Frobenius partitions. Providence, RI: American Mathematical Society (AMS) (1984; Zbl 0544.10010)], Sect. 4. These are F-partitions of the form \[ \begin{pmatrix}a_1 & a_2 & \dots & a_m \\ b_1 & b_2 & \dots & b_m \end{pmatrix}, \] where an integer may appear at most \(k\) times in each row and the order of the integers \(a_i\), \(b_i\) is assumed to be non-increasing. Such an F-partition is associated to the integer \[ n = m + \sum_{i=1}^m(a_i+b_i). \] The authors study the numbers \(c\psi_k(n)\) of all such F-partitions assigned to an integer \(n\) and more generally the numbers \(c\psi_{k,a}(n)\) of \((k,a)\)-colored F-partitions of \(n\), where \(a\in \mathbb{Z}+\frac{k}{2}\) is assumed to be non-negative.
A well known method to gain information on combinatorial quantities is the investigation the analytic properties of their associated generating function. For the case of the partition function and generalizations thereof, it is an established fact (see, e.g., [G. E. Andrews, Generalized Frobenius partitions. Providence, RI: American Mathematical Society (AMS) (1984; Zbl 0544.10010)]) that the generating function can essentially be expressed in terms of elliptic modular forms. The present paper adds new insight in this regard as it manages to relate the generating function \[ C\Psi_{k,a}(q) = \sum_{n=0}^\infty c\psi_{k,a}(n)q^n \] to a Jacobi form. More precisely, the following theorem is proved:
Let \(\vartheta(z,\tau) = \sum_{n\in \mathbb{Z}+\frac{1}{2}}e^{\pi in^2\tau+2\pi in(z+\frac{1}{2})}\) be the usual Jacobi theta function. For \(k\in \mathbb{Z}_{>0}\) we define a Jacobi form by \[ F_k(z;\tau):= \left(\frac{-\vartheta(z+\frac{1}{2},\tau)}{q^{\frac{1}{12}}\eta(\tau)}\right)^k, \] where \(\eta\) is the Dedekind eta function. Moreover, let \(\zeta = e^{2\pi i z}\). Then the \(\zeta^a\)-coefficient of \(F_k(z;\tau)\) is given by the generating function \(C\Psi_{k,a}(q)\).
Subsequently, under the assumption that \(k=2l\) is even, the theta decomposition (see [M. Eichler and D. Zagier, The theory of Jacobi forms. Boston-Basel-Stuttgart: Birkhäuser (1985; Zbl 0554.10018)], Chap. II, \(\S\) 5, (5), for details) \[ F_k(z,\tau) = \sum_{ a \bmod{2l}} H_{l,a}(\tau)\vartheta_{l,a}(z,\tau) \] of \(F_k(z,\tau)\) is exploited to derive a recursive formula for the functions \(H_{l,a}(\tau)\). As a consequence, the authors provide an algorithm to compute \(C\Psi_{k,a}(q)\) for any \(k\) and \(a\).
In Section 5, the previously obtained results are used to proof some congruence relations for the quantities \(c\psi_{k,a}(n)\). Finally, Section 6 of the paper presents a relation between shifted Motzkin paths (certain lattice paths) and \(C\Psi_{k,a}(q)\). Thereby, a connection between Motzkin paths and \((k,a)\)-colored F-partitions is established. These results extend the work of B. Drake [Discrete Math. 309, No. 12, 3936–3953 (2009; Zbl 1228.05032)].

MSC:

11F50 Jacobi forms
05A17 Combinatorial aspects of partitions of integers
11P83 Partitions; congruences and congruential restrictions
11F37 Forms of half-integer weight; nonholomorphic modular forms

References:

[1] Agarwal, A. K.; Narang, G., Generalized Frobenius partitions and mock-theta functions, Ars Comb., 99, 439-444 (2011) · Zbl 1265.05032
[2] Andrews, G. E., Generalized Frobenius partitions, Mem. Am. Math. Soc., 49, 301 (1984), iv+44 pp. · Zbl 0544.10010
[3] Baruah, N. D.; Sarmah, B. K., Congruences for generalized Frobenius partitions with 4 colors, Discrete Math., 311, 17, 1892-1902 (2011) · Zbl 1253.05025
[4] Baruah, N. D.; Sarmah, B. K., Generalized Frobenius partitions with 6 colors, Ramanujan J., 38, 2, 361-382 (2015) · Zbl 1325.05026
[5] Berndt, B. C., Ramanujan’s Notebooks. Part III (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0733.11001
[6] Bringmann, K.; Creutzig, T.; Rolen, L., Negative index Jacobi forms and quantum modular forms, Res. Math. Sci., 1, Article 11 pp. (2014), 32 pp. · Zbl 1349.11085
[7] Bringmann, K.; Folsom, A., Almost harmonic Maass forms and Kac-Wakimoto characters, J. Reine Angew. Math., 694, 179-202 (2014) · Zbl 1307.11054
[8] Bringmann, K.; Folsom, A.; Mahlburg, K., Quasimodular forms and s \(\ell ( m | m )^\wedge\) characters, Ramanujan J., 36, 1-2, 103-116 (2015) · Zbl 1380.11028
[9] Bringmann, K.; Folsom, A.; Ono, K.; Rolen, L., Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, AMS Colloquium Series, vol. 64 (2017), 391 pp. · Zbl 1459.11118
[10] Bringmann, K.; Murthy, S., On the positivity of black hole degeneracies in string theory, Commun. Number Theory Phys., 7, 1, 15-56 (2013) · Zbl 1279.83019
[11] Bringmann, K.; Ono, K., Some characters of Kac and Wakimoto and nonholomorphic modular functions, Math. Ann., 345, 3, 547-558 (2009) · Zbl 1262.11059
[12] K. Bringmann, L. Rolen, M. Woodbury, Formulas for Jacobi forms and generalized Frobenius partitions, 2016.
[13] Cao, Z., Integer matrix exact covering systems and product identities for theta functions, Int. Math. Res. Not., 19, 4471-4514 (2011) · Zbl 1247.33028
[14] Chan, H. H.; Wang, L.; Yang, Y., Modular forms and k-colored generalized Frobenius partitions, Trans. Am. Math. Soc., 371, 3, 2159-2205 (2019), MR3894049 · Zbl 1402.05007
[15] Cheng, M. C.N.; Duncan, J. F.R., Optimal mock Jacobi theta functions, Adv. Math., 372, Article 107284 pp. (2020), 60 pp. · Zbl 1462.11032
[16] Drake, B., Limits of areas under lattice paths, Discrete Math., 309, 12, 3936-3953 (2009) · Zbl 1228.05032
[17] Eichler, M.; Zagier, D., The Theory of Jacobi Forms, Progress in Mathematics, vol. 55 (1985), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0554.10018
[18] Folsom, A., Kac-Wakimoto characters and universal mock theta functions, Trans. Am. Math. Soc., 363, 1, 439-455 (2011) · Zbl 1261.11040
[19] Garvan, F. G.; Sellers, J. A., Congruences for generalized Frobenius partitions with an arbitrarily large number of colors, Integers, 14, Article A7 pp. (2014), 5 pp. · Zbl 1284.11136
[20] Hirschhorn, M. D., Some congruences for 6-colored generalized Frobenius partitions, Ramanujan J., 40, 3, 463-471 (2016) · Zbl 1407.11120
[21] Kac, V. G.; Wakimoto, M., Integrable highest weight modules over affine superalgebras and number theory, (Lie Theory and Geometry. Lie Theory and Geometry, Progr. Math., vol. 123 (1994), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 415-456 · Zbl 0854.17028
[22] Kac, V. G.; Wakimoto, M., Integrable highest weight modules over affine superalgebras and Appell’s function, Commun. Math. Phys., 215, 3, 631-682 (2001) · Zbl 0980.17002
[23] Kolitsch, L. W., An extension of a congruence by Andrews for generalized Frobenius partitions, J. Comb. Theory, Ser. A, 45, 1, 31-39 (1987) · Zbl 0613.10014
[24] Kolitsch, L. W., A congruence for generalized Frobenius partitions with 3 colors modulo powers of 3, (Analytic Number Theory. Analytic Number Theory, Allerton Park, IL, 1989. Analytic Number Theory. Analytic Number Theory, Allerton Park, IL, 1989, Progr. Math., vol. 85 (1990), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 343-348 · Zbl 0721.11040
[25] Kubert, D. S.; Lang, S., Modular Units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244 (1981), Springer-Verlag: Springer-Verlag New York-Berlin · Zbl 0492.12002
[26] Lin, B. L.S., New Ramanujan type congruence modulo 7 for 4-colored generalized Frobenius partitions, Int. J. Number Theory, 10, 3, 637-639 (2014) · Zbl 1285.05011
[27] Lovejoy, J., Ramanujan-type congruences for three colored Frobenius partitions, J. Number Theory, 85, 2, 283-290 (2000) · Zbl 0978.11056
[28] Ono, K., Congruences for Frobenius partitions, J. Number Theory, 57, 1, 170-180 (1996) · Zbl 0852.11057
[29] Sellers, J., Congruences involving generalized Frobenius partitions, Int. J. Math. Math. Sci., 16, 2, 413-415 (1993) · Zbl 0778.11056
[30] Sellers, J. A., An unexpected congruence modulo 5 for 4-colored generalized Frobenius partitions, J. Indian Math. Soc. (N.S.), 97-103 (2013), Special volume to commemorate the 125th birth anniversary of Srinivasa Ramanujan · Zbl 1290.05015
[31] Xia, E. X.W., Proof of a conjecture of Baruah and Sarmah on generalized Frobenius partitions with 6 colors, J. Number Theory, 147, 852-860 (2015) · Zbl 1386.11123
[32] Zhang, W.; Wang, C., An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions, Ramanujan J., 44, 1, 125-131 (2017), MR3696139 · Zbl 1386.05010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.