×

Recovery of a time-dependent bottom topography function from the shallow water equations via an adjoint approach. (English) Zbl 1523.65079

Summary: We develop an adjoint approach for recovering the topographical function included in the source term of one-dimensional hyperbolic balance laws. We focus on a specific system, namely, the shallow water equations, in an effort to recover the riverbed topography. The novelty of this work is the ability to robustly recover the bottom topography using only noisy boundary data from one measurement event and the inclusion of two regularization terms in the iterative update scheme. The adjoint scheme is determined from a linearization of the forward system and is used to compute the gradient of a cost function. The bottom topography function is recovered through an iterative process given by a three-operator splitting method which allows the feasibility of including two regularization terms. Numerous numerical tests demonstrate the robustness of the method regardless of the choice of initial guess and in the presence of discontinuities in the solution of the forward problem.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
35B65 Smoothness and regularity of solutions to PDEs
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
35R30 Inverse problems for PDEs
35R25 Ill-posed problems for PDEs

Software:

TAF

References:

[1] M. K. Banda and M. Herty, Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws, Comput. Optim. Appl., 51 (2012), pp. 909-930, https://doi.org/10.1007/s10589-010-9362-2. · Zbl 1241.65055
[2] A. Beck, First-Order Methods in Optimization, MOS-SIAM Ser. Optim. 25, SIAM, Philadelphia, 2017, https://doi.org/10.1137/1.9781611974997. · Zbl 1384.65033
[3] S. B. Brunnermeier and S. A. Martin, Interoperability costs in the US automotive supply chain, Supply Chain Manag., 7 (2002), pp. 71-82, https://doi.org/10.1108/13598540210425821.
[4] R. Bürger, A. Coronel, and M. Sepúlveda, Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation, in Hyerbolic Problems, American Mathematical Society, Providence, RI, 2009, pp. 445-454, https://doi.org/10.1090/psapm/067.2/2605240. · Zbl 1404.65138
[5] W. Castaings, D. Dartus, M. Honnorat, F. X. Le Dimet, Y. Loukili, and J. Monnier, Automatic differentiation: A tool for variational data assimilation and adjoint sensitivity analysis for flood modeling, in Automtic Differentiation: Applications, Theory, and Implementations, Lect. Notes Comput. Sci. Eng., 50, Springer, Berlin, 2006, pp. 249-262, https://doi.org/10.1007/3-540-28438-9_22. · Zbl 1270.86003
[6] A. Cauchy, Methode generale pour la resolution des systemes d’equations simultanees, C.R. Acad. Sci. Paris, 25 (1847), pp. 536-538.
[7] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comp., 52 (1989), pp. 411-435, https://doi.org/10.2307/2008474. · Zbl 0662.65083
[8] S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich, Numerical solution of optimal control problems governed by the compressible Navier-Stokes equations, in Optimal Control of Complex Structures, Birkhäuser Basel, Basel, Switzerland, 2001, pp. 43-55, https://doi.org/10.1007/978-3-0348-8148-7_4. · Zbl 1024.49027
[9] J. Darbon, On convex finite-dimensional variational methods in imaging sciences and Hamilton-Jacobi equations, SIAM J. Imaging Sci., 8 (2015), pp. 2268-2293, https://doi.org/10.1137/130944163. · Zbl 1330.35076
[10] J. Darbon and S. Osher, Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere, Res. Math. Sci., 3 (2016), 19, https://doi.org/10.1186/s40687-016-0068-7. · Zbl 1348.49026
[11] D. Davis and W. Yin, A three-operator splitting scheme and its optimization applications, Set-Valued Var. Anal., 25 (2017), pp. 829-858, https://doi.org/10.1007/s11228-017-0421-z. · Zbl 1464.47041
[12] P. R. Eiseman and A. P. Stone, Conservation laws of fluid dynamics-A survey, SIAM Rev., 22 (1980), pp. 12-27, https://doi.org/10.1137/1022002. · Zbl 0425.76001
[13] M. Ferlauto, A pseudo-compressibility method for solving inverse problems based on the 3D incompressible Euler equations, Inverse Probl. Sci. Eng., 23 (2015), pp. 798-817, https://doi.org/10.1080/17415977.2014.939653. · Zbl 1329.65209
[14] S. Fischer and I. Steinwart, Sobolev norm learning rates for regularized least-squares algorithm, J. Mach. Learn. Res., 21 (2020), pp. 1-38. · Zbl 1475.68268
[15] M. Garavello and B. Piccoli, Traffic Flow on Networks: Conservation Laws Model, American Institute of Mathematical Sciences, Springfeild, MO, 2006. · Zbl 1136.90012
[16] A. F. Gessese, M. Sellier, E. Van Houten, and G. Smart, Reconstruction of river bed topography from free surface data using a direct numerical approach in one-dimensional shallow water flow, Inverse Problems, 27 (2011), 025001, https://doi.org/10.1088/0266-5611/27/2/025001. · Zbl 1210.35286
[17] R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Trans. Math. Software, 24 (1998), pp. 437-474, https://doi.org/10.1145/293686.293695. · Zbl 0934.65027
[18] M. Giles and S. Ulbrich, Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part \(2\): Adjoint approximations and extensions, SIAM J. Numer. Anal., 48 (2010), pp. 905-921, https://doi.org/10.1137/09078078X. · Zbl 1215.65147
[19] M. B. Giles and N. A. Pierce, An introduction to the adjoint approach to design, Flow, Turbul. Combust., 65 (2000), pp. 393-415, https://doi.org/10.1023/A:1011430410075. · Zbl 0996.76023
[20] O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation, SIAM J. Control Optim., 46 (2007), pp. 1211-1238, https://doi.org/10.1137/060664677. · Zbl 1140.93013
[21] G. Gomes and R. Horowitz, Optimal freeway ramp metering using the asymmetric cell transmission model, Transp. Res. Part C, 14 (2006), pp. 244-262, https://doi.org/10.1016/j.trc.2006.08.001.
[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016. · Zbl 1373.68009
[23] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89-112, https://doi.org/10.1137/S003614450036757X. · Zbl 0967.65098
[24] M. Gugat, M. Dick, and G. Leugering, Gas flow in fan-shaped networks: Classical solutions and feedback stabilization, SIAM J. Control Optim., 49 (2011), pp. 2101-2117, https://doi.org/10.1137/100799824. · Zbl 1237.35107
[25] M. Gugat, M. Herty, A. Klar, and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), pp. 589-616, https://doi.org/10.1007/s10957-005-5499-z. · Zbl 1079.49024
[26] P. C. Hansen, The l-curve and Its Use in the Numerical Treatment of Inverse Problems, in Computational Inverse Problems in Electrocardiology, P. Johnston, ed., Adv. Comput. Bioeng., WIT Press, Southampton, England, 2000, pp. 119-142.
[27] C. Heining and N. Aksel, Bottom reconstruction in thin-film flow over topography: Steady solution and linear stability, Phys. Fluids, 21 (2009), https://doi.org/10.1063/1.3211289. · Zbl 1183.76243
[28] M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier-Stokes flow, in Optimal Control: Theory, Algorithms, and Applications, Springer, Boston, 1998, pp. 178-203, https://doi.org/10.1007/978-1-4757-6095-8_9. · Zbl 0924.76021
[29] P. Heinrich, Nonlinear water waves generated by submarine and aerial landslides, J. Waterway, Port, Coastal Ocean Eng., 118 (1992), pp. 249-266, https://doi.org/10.1061/(ASCE)0733-950X(1992)118:3(249).
[30] M. Hintermüller, Semismooth Newton Methods and Applications, Technical report, Department of Mathematics, Humboldt-University of Berlin, 2010.
[31] H. Holden, F. S. Priuli, and N. H. Risebro, On an inverse problem for scalar conservation laws, Inverse Problems, 30 (2014), 035015, https://doi.org/10.1088/0266-5611/30/3/035015. · Zbl 1286.35266
[32] M. Honnorat, J. Marin, J. Monnier, and X. Lai, Dassflow v \(1.0\): A Variational Data Assimilation Software for 2D River Flows, Technical report, https://hal.inria.fr/inria-00137447v2 (2007).
[33] P. Hu, Z. Cao, G. Pender, and G. Tan, Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China, J. Hydrol., 464-465 (2012), pp. 41-53, https://doi.org/10.1016/j.jhydrol.2012.06.032.
[34] D. Jacquet, C. C. De Wit, and D. Koenig, Traffic control and monitoring with a macroscopic model in the presence of strong congestion waves, in Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC ’05, IEEE, Piscataway, NJ, 2005, pp. 2164-2169, https://doi.org/10.1109/CDC.2005.1582482.
[35] D. Jacquet, M. Krstic, and C. C. De Wit, Optimal control of scalar one-dimensional conservation laws, in Proceedings of the American Control Conference, IEEE, Piscataway, NJ, 2006, pp. 5213-5218, https://doi.org/10.1109/acc.2006.1657550.
[36] D. Jacquet, C. C. D. Wit, and D. Koenig, Optimal ramp metering strategy with extended LWR model, analysis and computational methods, IFAC Proc., 38 (2005), pp. 99-104, https://doi.org/10.3182/20050703-6-CZ-1902.00877.
[37] A. Jameson, Aerodynamic design via control theory, J. Sci. Comput., 3 (1988), pp. 233-260, https://doi.org/10.1007/BF01061285. · Zbl 0676.76055
[38] A. Jameson, Optimum aerodynamic design using CFD and control theory, in Proceedings of the 12th Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Reston, VA, 1995, pp. 926-949, https://doi.org/10.2514/6.1995-1729.
[39] H. Kang and K. Tanuma, Inverse problems for scalar conservation laws, Inverse Probl., 21 (2005), pp. 1047-1060, https://doi.org/10.1088/0266-5611/21/3/015. · Zbl 1071.35125
[40] S. Kindermann, S. Osher, and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), pp. 1091-1115, https://doi.org/10.1137/050622249. · Zbl 1161.68827
[41] A. Kotsialos and M. Papageorgiou, Nonlinear optimal control applied to coordinated ramp metering, IEEE Trans. Control System Technol., 12 (2004), pp. 920-933, https://doi.org/10.1109/TCST.2004.833406.
[42] A. Kurganov, Finite-volume schemes for shallow-water equations, Acta Numerica, 27 (2018), pp. 289-351, https://doi.org/10.1017/S0962492918000028. · Zbl 1430.76372
[43] J. Larson, M. Menickelly, and S. M. Wild, Derivative-free optimization methods, Acta Numer., 28 (2019), pp. 287-404, https://doi.org/10.1017/S0962492919000060. · Zbl 1461.65169
[44] J. M. Lellouche, J. L. Devenon, and I. Dekeyser, Boundary control of Burgers’ equation-a numerical approach, Comput. Math. Appl., 28 (1994), pp. 33-44, https://doi.org/10.1016/0898-1221(94)00138-3. · Zbl 0807.76065
[45] S. Li and C. J. Duffy, Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers, Water Res. Res., 47 (2011), https://doi.org/10.1029/2010WR009751.
[46] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971. · Zbl 0203.09001
[47] P. Moin and T. Bewley, Feedback control of turbulence, Appl. Mech. Rev., 47 (1994), pp. S3-S13, https://doi.org/10.1115/1.3124438.
[48] J. Monnier, F. Couderc, D. Dartus, K. Larnier, R. Madec, and J. P. Vila, Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics, Adv. Water Res., 97 (2016), pp. 11-24, https://doi.org/10.1016/j.advwatres.2016.07.005.
[49] G. I. Montecinos, J. C. López-Ríos, J. H. Ortega, and R. Lecarios, A numerical procedure and unified formulation for the adjoint approach in hyperbolic PDE-constrained optimization problems, IMA J. Appl. Math. 84 (2019), pp. 483-516. · Zbl 1473.49035
[50] J.-D. Müller and P. Cusdin, On the performance of discrete adjoint CFD codes using automatic differentiation, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 939-945, https://doi.org/10.1002/fld.885. · Zbl 1134.76431
[51] M. K. Ng, R. H. Chan, T. F. Chan, and A. M. Yip, Cosine transform preconditioners for high resolution image reconstruction, Linear Algebra Appl., 316 (2000), pp. 89-104, https://doi.org/10.1016/S0024-3795(99)00274-8. · Zbl 0993.65056
[52] N. Parikh, Proximal Algorithms, Found. Trends Optim., 1 (2014), pp. 127-239, https://doi.org/10.1561/2400000003.
[53] O. Pironneau, On optimum design in fluid mechanics, J. Fluid Mech., 64 (1974), pp. 97-110, https://doi.org/10.1017/S0022112074002023. · Zbl 0281.76020
[54] J. Qiu and C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26 (2005), pp. 907-929, https://doi.org/10.1137/S1064827503425298. · Zbl 1077.65109
[55] R. L. Raffard, K. Amonlirdviman, J. D. Axelrod, and C. J. Tomlin, An adjoint-based parameter identification algorithm applied to planar cell polarity signaling, IEEE Trans. Automat. Control, 53 (2008), pp. 109-121, https://doi.org/10.1109/TAC.2007.911362. · Zbl 1366.92034
[56] J. Reilly, S. Samaranayake, M. L. Delle Monache, W. Krichene, P. Goatin, and A. M. Bayen, Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering, J. Optim. Theory Appl., 167 (2015), pp. 733-760, https://doi.org/10.1007/s10957-015-0749-1. · Zbl 1337.35161
[57] J. Reuther, A. Jameson, J. Farmer, L. Marlinelli, and D. Saunders, Aerodynamic Shape Optimization of Complex Aircraft Configurations Via an Adjoint Formulation, in Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston, VA, 1996, 96-or94, https://doi.org/10.2514/6.1996-94.
[58] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268, https://doi.org/10.1016/0167-2789(92)90242-F. · Zbl 0780.49028
[59] J. F. Sleath, Sediment transport by waves and currents, J. Geophys. Res., Oceans, 100 (1995), pp. 10977-10986, https://doi.org/10.1029/95jc00140.
[60] W. Sun and Y.-X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006. · Zbl 1129.90002
[61] R. Vazquez, J. M. Coron, M. Krstic, and G. Bastin, Local exponential \(H^2\) stabilization of a 2 x 2 quasilinear hyperbolic system using backstepping, in Proceedings of the IEEE Conference on Decision and Control, IEEE, Piscataway, NJ, 2011, pp. 1329-1334, https://doi.org/10.1109/CDC.2011.6161075. · Zbl 1408.35009
[62] A. Wirgin, The Inverse Crime, http://arxiv.org/abs/math-ph/0401050 (2004).
[63] Y. Xing, Numerical methods for the nonlinear shallow water equations, in Handb. Numer. Anal., Vol. 18, Elsevier, Amsterdam, 2017, pp. 361-384, https://doi.org/10.1016/bs.hna.2016.09.003. · Zbl 1366.76066
[64] Y. Xing and C. W. Shu, High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields, J. Sci. Comput., 54 (2013), pp. 645-662, https://doi.org/10.1007/s10915-012-9585-8. · Zbl 1260.76022
[65] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for \(\ell_1\)-minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), pp. 143-168, https://doi.org/10.1137/070703983. · Zbl 1203.90153
[66] T. Young, XIII, Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood, Philos. Trans. Roy. Soc. Lond., 98 (1808), pp. 164-186, https://doi.org/10.1098/rstl.1808.0014.
[67] A. K. Ziliaskopoulos, A linear programming model for the single destination system optimum dynamic traffic assignment problem, Transp. Sci., 34 (2000), pp. 37-49, https://doi.org/10.1287/trsc.34.1.37.12281. · Zbl 1002.90013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.