×

\(q\)-deformation of the square white noise Lie algebra. (English) Zbl 1400.46057

Summary: For \(q \in(0, 1)\), the \(q\)-deformation of the square white noise Lie algebra is introduced using the \(q\)-calculus. A representation of this Lie algebra is given, using the \(q\)-derivative (or Jackson derivative) and the multiplication operator. The free square white noise Lie algebra is defined. Moreover, its representation on the Hardy space is given.

MSC:

46L65 Quantizations, deformations for selfadjoint operator algebras
17B99 Lie algebras and Lie superalgebras
60H40 White noise theory

References:

[1] Accardi, L.; Boukas, A., Quantum probability, renormalization and infinite-dimensional *-Lie algebras, SIGMA, 5, 056, (2009), 31 pages · Zbl 1193.60090
[2] Ettaieb, A.; Ouerdiane, H.; Rguigui, H., Cauchy problem and integral representation associated to the power of the -Euler operator, Commun. Stoch. Anal., 6, 4, 615-627, (2012) · Zbl 1331.60140
[3] Ettaieb, A.; Ouerdiane, H.; Rguigui, H., Powers of quantum white noise derivatives, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 17, 1450018, (2014), [16 pages] · Zbl 1309.60075
[4] Ettaieb, A.; Ouerdiane, H.; Rguigui, H., Higher powers of quantum white noise derivatives, Commun. Stoch. Anal., 8, 4, (2014), Article 8 · Zbl 1309.60075
[5] Ettaieb, A.; Khalifa, N. T.; Ouerdiane, H.; Rguigui, H., Higher powers of analytical operators and associated-Lie algebras, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 19, 1650013, (2016), [20 pages] · Zbl 1342.60117
[6] Rguigui, H., Quantum Ornstein-Uhlenbeck semigroups, Quantum Stud.: Math. Found., 2, 2, 159-175, (2015) · Zbl 1319.81060
[7] Rguigui, H., Quantum \(\lambda\)-potentials associated to quantum Ornstein-Uhlenbeck semigroups, Chaos Solitons Fractals, 73, 80-89, (2015) · Zbl 1352.81046
[8] Rguigui, H., Characterization of the -conservation operator, Chaos Solitons Fractals, 84, 41-48, (2016) · Zbl 1371.81120
[9] Rguigui, H., Wick differential and Poisson equations associated to the QWN-Euler operator acting on generalized operators, Math. Slovaca, 66, 6, (2016) · Zbl 1399.60117
[10] Altoum, S. H.; Othman, H. A.; Rguigui, H., Quantum white noise Gaussian kernel operators, Chaos Solitons Fractals, 104, 468-476, (2017) · Zbl 1378.47002
[11] Leeuwen, H. V.; Maassen, H., A \(q\)-deformation of the Gauss distribution, J. Math. Phys., 36, 9, 4743-4756, (1995) · Zbl 0841.60089
[12] Abdi, W. H., On certain \(q\)-difference equations and \(q\)-Laplace transforms, Proc. Nat. Inst. Sci. India Acad, 28A, 1-15, (1962) · Zbl 0105.30601
[13] Adams, C. R., On the linear ordinary \(q\)-difference equation, Am. Math. Ser. II, 30, 195-205, (1929) · JFM 55.0263.01
[14] Gasper, G.; Rahman, M., (Basic Hypergeometric Series, Encyclopedia of Mathematics and its Application, vol. 35, (1990), Cambridge Universty Press Cambridge) · Zbl 0695.33001
[15] Jackson, H. F., \(q\)-difference equations, Amer. J. Math., 32, 305-314, (1910) · JFM 41.0502.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.