×

Propagation of chaos for mean field rough differential equations. (English) Zbl 1497.60073

The authors address propagation of chaos for large systems of rough differential equations associated with random rough differential equations of mean field type \[ dX_t = V(X_t, \mathcal{L}(X_t ))dt + F(X_t ,\mathcal{L}(X_t ))dW_t, \] where \(W\) is a random rough path and \(\mathcal{L}(X_t )\) is the law of \(X_t\). They prove propagation of chaos, and provide also an explicit optimal convergence rate. The first main result shows that, for a sufficiently large class of input signals, propagation of chaos is in fact a consequence of the continuity of the Itô-Lyons solution map for mean field rough differential equations. While the proofs of both the first main result and the underlying continuity property of the Itô-Lyons solution map are mostly based on compactness arguments, the second main result is to elucidate, under slightly stronger assumptions, the convergence rate in the propagation of chaos. The strategy is directly inspired from original Sznitman’s coupling argument for mean field systems driven by Brownian signals. Although the proof is much more involved than in the Brownian setting, the authors recover the same rate of convergence: it coincides with the rate of convergence (in Wasserstein metric) of the empirical measure of an \(n\)-sample of (sufficiently integrable) independent identically distributed variables to their common distribution. In particular, the speed decays with the dimension.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60L50 Rough partial differential equations

References:

[1] Albeverio, S., Kondratiev, Y. G. and Röckner, M. (1996). Differential geometry of Poisson spaces. C. R. Acad. Sci. Paris Sér. I Math. 323 1129-1134. · Zbl 0866.58011
[2] Albeverio, S., Kondratiev, Yu. G. and Röckner, M. (1998). Analysis and geometry on configuration spaces. J. Funct. Anal. 154 444-500. · Zbl 0914.58028 · doi:10.1006/jfan.1997.3183
[3] Ambrosio, L., Gigli, N. and Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. · Zbl 1090.35002
[4] Bailleul, I. (2015). Flows driven by rough paths. Rev. Mat. Iberoam. 31 901-934. · Zbl 1352.34089 · doi:10.4171/RMI/858
[5] Bailleul, I., Catellier, R. and Delarue, F. (2020). Solving mean field rough differential equations. Electron. J. Probab. 25 Paper No. 21. · Zbl 1464.60056 · doi:10.1214/19-ejp409
[6] Bailleul, I., Catellier, R. and Delarue, F. (2020). Solving mean field rough differential equations. Electron. J. Probab. 25 Paper No. 21, 51. · Zbl 1464.60056 · doi:10.1214/19-ejp409
[7] Bailleul, I. and Riedel, S. (2019). Rough flows. J. Math. Soc. Japan 71 915-978. · Zbl 1480.60151 · doi:10.2969/jmsj/80108010
[8] Barbu, V. and Röckner, M. (2020). From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE. Ann. Probab. 48 1902-1920. · Zbl 1469.60216 · doi:10.1214/19-AOP1410
[9] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York. · Zbl 0944.60003 · doi:10.1002/9780470316962
[10] Budhiraja, A., Dupuis, P. and Fischer, M. (2012). Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40 74-102. · Zbl 1242.60026 · doi:10.1214/10-AOP616
[11] Budhiraja, A. and Wu, R. (2017). Moderate deviation principles for weakly interacting particle systems. Probab. Theory Related Fields 168 721-771. · Zbl 1369.60012 · doi:10.1007/s00440-016-0723-3
[12] Cardaliaguet, P. (2013). Notes on mean field games. https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf. · Zbl 1314.91043
[13] Carmona, R.and Delarue, F. (2015). Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. Ann. Probab. 43 2647-2700. · Zbl 1322.93103 · doi:10.1214/14-AOP946
[14] Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. I: Mean Field FBSDEs, Control, and Games. Probability Theory and Stochastic Modelling 83. Springer, Cham. · Zbl 1422.91014
[15] Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. · Zbl 1422.91015
[16] Cass, T., dos Reis, G. and Slakeld, W. (2019). The support of McKean Vlasov equations driven by Brownian motion. Available at arXiv:1911.01992.
[17] Cass, T., Litterer, C. and Lyons, T. (2013). Integrability and tail estimates for Gaussian rough differential equations. Ann. Probab. 41 3026-3050. · Zbl 1278.60091 · doi:10.1214/12-AOP821
[18] Cass, T. and Lyons, T. (2015). Evolving communities with individual preferences. Proc. Lond. Math. Soc. (3) 110 83-107. · Zbl 1321.60204 · doi:10.1112/plms/pdu040
[19] Coghi, M., Deuschel, J.-D., Friz, P. and Maurelli, M. (2018). Pathwise McKean-Vlasov theory. Available at arXiv:1812.11773.
[20] Coghi, M. and Flandoli, F. (2016). Propagation of chaos for interacting particles subject to environmental noise. Ann. Appl. Probab. 26 1407-1442. · Zbl 1345.60113 · doi:10.1214/15-AAP1120
[21] Coghi, M. and Gess, B. (2019). Stochastic nonlinear Fokker-Planck equations. Nonlinear Anal. 187 259-278. · Zbl 1423.35471 · doi:10.1016/j.na.2019.05.003
[22] Coghi, M. and Nilssen, T. (2019). Rough nonlocal diffusions. Available at arXiv:1905.07270.
[23] Dawson, D. and Vaillancourt, J. (1995). Stochastic McKean-Vlasov equations. NoDEA Nonlinear Differential Equations Appl. 2 199-229. · Zbl 0830.60091 · doi:10.1007/BF01295311
[24] Dawson, D. A. and Gärtner, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20 247-308. · Zbl 0613.60021 · doi:10.1080/17442508708833446
[25] Deuschel, J.-D., Friz, P. K., Maurelli, M. and Slowik, M. (2018). The enhanced Sanov theorem and propagation of chaos. Stochastic Process. Appl. 128 2228-2269. · Zbl 1434.60313 · doi:10.1016/j.spa.2017.09.010
[26] Fournier, N. and Guillin, A. (2015). On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 707-738. · Zbl 1325.60042 · doi:10.1007/s00440-014-0583-7
[27] Friz, P. and Victoir, N. (2010). Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 369-413. · Zbl 1202.60058 · doi:10.1214/09-AIHP202
[28] Friz, P. K. and Hairer, M. (2014). A Course on Rough Paths: With an Introduction to Regularity Structures. Universitext. Springer, Cham. · Zbl 1327.60013 · doi:10.1007/978-3-319-08332-2
[29] Friz, P. K. and Victoir, N. B. (2010). Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge Univ. Press, Cambridge. · Zbl 1193.60053 · doi:10.1017/CBO9780511845079
[30] Gangbo, W. and Tudorascu, A. (2019). On differentiability in the Wasserstein space and well-posedness for Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 125 119-174. · Zbl 1419.35234 · doi:10.1016/j.matpur.2018.09.003
[31] Gärtner, J. (1988). On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 197-248. · Zbl 0678.60100 · doi:10.1002/mana.19881370116
[32] Gubinelli, M. (2004). Controlling rough paths. J. Funct. Anal. 216 86-140. · Zbl 1058.60037 · doi:10.1016/j.jfa.2004.01.002
[33] Jabin, P.-E. and Wang, Z. (2018). Quantitative estimates of propagation of chaos for stochastic systems with \[{W^{-1,\infty }}\] kernels. Invent. Math. 214 523-591. · Zbl 1402.35208 · doi:10.1007/s00222-018-0808-y
[34] Jordan, R., Kinderlehrer, D. and Otto, F. (1998). The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 1-17. · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[35] Jourdain, B. and Méléard, S. (1998). Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. Henri Poincaré Probab. Stat. 34 727-766. · Zbl 0921.60053 · doi:10.1016/S0246-0203(99)80002-8
[36] Kac, M. (1956). Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, \(1954-1955\), Vol. III 171-197. Univ. California Press, Berkeley and Los Angeles. · Zbl 0072.42802
[37] Kolokoltsov, V. N. and Troeva, M. (2019). On mean field games with common noise and McKean-Vlasov SPDEs. Stoch. Anal. Appl. 37 522-549. · Zbl 1415.60075 · doi:10.1080/07362994.2019.1592690
[38] Lions, P.-L. Théorie des jeux à champs moyen et applications. Lectures at the Collège de France, 2007-2008. Available at http://www.college-de-france.fr/default/EN/all/equ_der/cours_et_seminaires.htm.
[39] Lott, J. (2008). Some geometric calculations on Wasserstein space. Comm. Math. Phys. 277 423-437. · Zbl 1144.58007 · doi:10.1007/s00220-007-0367-3
[40] Lyons, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoam. 14 215-310. · Zbl 0923.34056 · doi:10.4171/RMI/240
[41] McKean, H. P. Jr. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 1907-1911. · Zbl 0149.13501 · doi:10.1073/pnas.56.6.1907
[42] Méléard, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Math. 1627 42-95. Springer, Berlin. · Zbl 0864.60077 · doi:10.1007/BFb0093177
[43] Otto, F. (2001). The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 101-174. · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[44] Overbeck, L., Röckner, M. and Schmuland, B. (1995). An analytic approach to Fleming-Viot processes with interactive selection. Ann. Probab. 23 1-36. · Zbl 0833.60053
[45] Ren, P. and Wang, F.-Y. (2019). Derivative formulas in measure on Riemannian manifold. Available at arXiv:1908.03711.
[46] Rosenthal, H. P. (1972). On the span in \[{L^p}\] of sequences of independent random variables. II. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 149-167. · Zbl 0255.60003
[47] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. · Zbl 0732.60114 · doi:10.1007/BFb0085169
[48] Tanaka, H. (1978/79). Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46 67-105. · Zbl 0389.60079 · doi:10.1007/BF00535689
[49] Tanaka, H. (1984). Limit theorems for certain diffusion processes with interaction. In Stochastic Analysis (Katata/Kyoto, 1982). North-Holland Math. Library 32 469-488. North-Holland, Amsterdam. · Zbl 0552.60051 · doi:10.1016/S0924-6509(08)70405-7
[50] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI. · Zbl 1106.90001 · doi:10.1090/gsm/058
[51] Wu, C. and Zhang, J. (2017). An elementary proof for the structure of derivatives in probability measures. Available at arXiv:1705.08046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.