×

On the stability of a generalization of Jensen functional equation. (English) Zbl 1399.39061

The author uses the fixed point method to prove the stability and the hyperstability of a generalization of Jensen functional equation \[ \sum_{k=0}^{n-1}f(x+b_ky)=nf(x) \] in the setting of Banach spaces. Here \(n \geq 2\), \(b_k=\exp(2i\pi k/n)\) for \(0\leq k \leq n-1\).

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64–66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[2] Bahyrycz A., Piszczek M.: Hyperstability of the Jensen functional equation. Acta Math. Hungar., 142, 353–365 (2014) · Zbl 1299.39022 · doi:10.1007/s10474-013-0347-3
[3] Baker J.A.: A general functional equation and its stability. Proc. Amer. Math. Soc., 133, 1657–1664 (2005) · Zbl 1066.39026 · doi:10.1090/S0002-9939-05-07841-X
[4] Bourgin D.G.: Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J., 16, 385–397 (1949) · Zbl 0033.37702 · doi:10.1215/S0012-7094-49-01639-7
[5] Brzdȩk J.: Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungar., 141, 58–67 (2013) · Zbl 1313.39037 · doi:10.1007/s10474-013-0302-3
[6] Brzdȩk J.: Remarks on hyperstability of the Cauchy functional equation. Aequat. Math., 86, 255–267 (2013) · Zbl 1303.39016 · doi:10.1007/s00010-012-0168-4
[7] Brzdȩk J.: A hyperstability result for the Cauchy equation. Bull. Aust. Math. Soc., 89, 33–40 (2014) · Zbl 1290.39016 · doi:10.1017/S0004972713000683
[8] Brzdȩk J., Chudziak J., Páles Zs.: A fixed point approach to stability of functional equations. Nonlinear Anal., 74, 6728–6732 (2011) · Zbl 1236.39022 · doi:10.1016/j.na.2011.06.052
[9] Brzdȩk J., Ciepliński K.: A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal., 74, 6861–6867 (2011) · Zbl 1237.39022 · doi:10.1016/j.na.2011.06.050
[10] J. Brzdȩk and K. Ciepliński, Hyperstability and superstability, Abs. Appl. Anal., 2013 (2013), Article ID 401756, 13 pp.
[11] L. Cǎdariu and V. Radu, Fixed points and the stability of Jensens functional equation, J. Inequal. Pure Appl. Math., 4 (2003), Article 4.
[12] A. Chahbi, M. Almahalebi, A. Charifi and S. Kabbaj, Generalized Jensen functional equation on restricted domain, Ann. West Univ. Timisoara-Mathematics, 52 (2014), 29–39. · Zbl 1349.39045
[13] Chahbi A.B., Charifi A., Bouikhalene B., Kabbaj S.: Non-archimedean stability of a Pexider K-quadratic functional equation. Arab J. Math. Sci., 21, 67–83 (2015) · Zbl 1308.39022
[14] Găvruţa P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431–436 (1994) · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[15] Gselmann E.: Hyperstability of a functional equation. Acta Math. Hungar., 124, 179–188 (2009) · Zbl 1212.39044 · doi:10.1007/s10474-009-8174-2
[16] Hyers D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A., 27, 222–224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[17] Kenary H.A.: On the Hyers–Ulam–Rassias stability of a functional equation in non-Archimedean and random normed spaces. Acta Univ. Apulensis, Math. Inform., 27, 173–186 (2011) · Zbl 1265.39054
[18] H. A. Kenary, S. Y. Jang and C. Park, A fixed point approach to the Hyers–Ulam stability of a functional equation in various normed spaces, Fixed Point Theory Appl., 2011 (2011), 14 pp. · Zbl 1278.39038
[19] Łukasik R. (2012) Some generalization of Cauchy’s and the quadratic functional equations. Aequat. Math., 83, 75–86 · Zbl 1239.39019
[20] Maksa Gy., Páles Zs.: Hyperstability of a class of linear functional equations. Acta Math. Acad. Paedag. Nyíregyházi., 17, 107–112 (2001)
[21] Piszczek M.: Remark on hyperstability of the general linear equation. Aequat. Math., 88, 163–168 (2014) · Zbl 1304.39033 · doi:10.1007/s00010-013-0214-x
[22] Rassias Th. M.: On the stability of linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297–300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[23] Stetkær H.: Functional equations involving means of functions on the complex plane. Aequat. Math., 55, 47–62 (1998) · Zbl 0913.39015 · doi:10.1007/s000100050043
[24] Ulam S.M.: Problems in Modern Mathematics. Wiley, New York (1960) · Zbl 0137.24201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.