×

The Stolarsky principle and energy optimization on the sphere. (English) Zbl 1426.11075

In the paper under review the authors study the relation between the discrepancy of a point set \(Z=\{z_1,z_2,\dots,z_N\}\subseteq \mathbb S^d\) on a sphere and the energy \[ E_F(Z)=\frac{1}{N^2}\sum_{i,j}^N F(z_i,z_j) \] for a given function \(F:\mathbb S^d\times \mathbb S^d\rightarrow \mathbb R\). In case that \(F\) is the distance function \(F(x,y)=\|x,y\|\) such a relation is known as Stolarsky invariance principle which was proved by K. B. Stolarsky [Proc. Am. Math. Soc. 41, 575–582 (1973; Zbl 0274.52012)]. In this paper, the authors prove several generalizations of the Stolarsky invariance principle and further explore the relation between the discrepancy and the energy of point sets on a sphere.

MSC:

11K38 Irregularities of distribution, discrepancy
74G65 Energy minimization in equilibrium problems in solid mechanics
42A82 Positive definite functions in one variable harmonic analysis

Citations:

Zbl 0274.52012

References:

[1] Aigner, M., Ziegler, G.: Proofs from The Book, 5th edn. Springer, Berlin (2014) · Zbl 1294.01001
[2] Beck, J, Some upper bounds in the theory of irregularities of distribution, Acta Arith., 43, 115-130, (1984) · Zbl 0536.10041 · doi:10.4064/aa-43-2-115-130
[3] Beck, J, Sums of distances between points on a sphere-an application of the theory of irregularities of distribution to discrete geometry, Mathematika, 31, 33-41, (1984) · Zbl 0553.51013 · doi:10.1112/S0025579300010639
[4] Benedetto, J; Fickus, M, Finite normalized tight frames, Adv. Comput. Math., 18, 357-385, (2003) · Zbl 1028.42022 · doi:10.1023/A:1021323312367
[5] Bilyk, D., Dai, F.: Geodesic distance Riesz energy on the sphere, 2017, to appear, available at arXiv: 1612.08442 · Zbl 0274.52012
[6] Bilyk, D., Lacey, M.: Random tessellations, restricted isometric embeddings, and one bit sensing, 2017, to appear, available at arXiv:1512.06697 · Zbl 0091.35701
[7] Bilyk, D; Lacey, M, One bit sensing, discrepancy, and Stolarsky principle, Sb. Math., 208, 744-763, (2017) · Zbl 1388.11052 · doi:10.1070/SM8656
[8] Björck, G, Distributions of positive mass, which maximize a certain generalized energy integral, Ark. Mat., 3, 255-269, (1956) · Zbl 0071.10105 · doi:10.1007/BF02589412
[9] Blümlinger, M, Slice discrepancy and irregularities of distribution on spheres, Mathematika, 38, 105-116, (1991) · Zbl 0778.11040 · doi:10.1112/S0025579300006483
[10] Borodachov, S., Hardin, D., Saff, E.: Minimal Discrete Energy on Rectifiable Sets, Springer, Monographs in Math. (to appear) · Zbl 0132.17403
[11] Brauchart, J, About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case, Integral Transforms Spec. Funct., 17, 321-328, (2006) · Zbl 1100.41018 · doi:10.1080/10652460500431859
[12] Brauchart, J; Hardin, D; Saff, E, Discrete energy asymptotics on a Riemannian circle, Unif. Distrib. Theory, 7, 77-108, (2012) · Zbl 1324.31006
[13] Brauchart, JS; Dick, J, A simple proof of stolarsky’s invariance principle, Proc. Am. Math. Soc., 141, 2085-2096, (2013) · Zbl 1275.41024 · doi:10.1090/S0002-9939-2013-11490-5
[14] Drmota, M., Tichy, R.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997) · Zbl 0877.11043
[15] Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York (2013) · Zbl 1275.42001 · doi:10.1007/978-1-4614-6660-4
[16] Damelin, S; Hickernell, F; Ragozin, D; Zeng, X, On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space, J. Fourier Anal. Appl., 16, 813-839, (2010) · Zbl 1292.49041 · doi:10.1007/s00041-010-9153-2
[17] Fejes Tóth, L, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hungar., 7, 397-401, (1956) · Zbl 0072.38604 · doi:10.1007/BF02020534
[18] Fejes Tóth, L, Über eine punktverteilung auf der kugel (German), Acta Math. Acad. Sci. Hung., 10, 13-19, (1959) · Zbl 0086.15406 · doi:10.1007/BF02063286
[19] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press Inc, San Diego, CA (2000) · Zbl 0981.65001
[20] Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications, vol. 61. Cambridge University Press, Cambridge (1996) · Zbl 0877.52002 · doi:10.1017/CBO9780511530005
[21] He, H., Basu, K., Zhao, Q., Owen, A.: Permutation \(p\)-value approximation via generalized Stolarsky invariance, to appear, available at arXiv:1603.02757 · Zbl 1292.49041
[22] Hinrichs, A; Nickolas, P; Wolf, R, A note on the metric geometry of the unit ball, Math. Z., 268, 887-896, (2011) · Zbl 1229.51014 · doi:10.1007/s00209-010-0700-y
[23] Jiang, M, On the sum of distances along a circle, Discrete Math., 308, 2038-2045, (2008) · Zbl 1159.05314 · doi:10.1016/j.disc.2007.04.025
[24] Kuijlaars, A; Saff, E, Asymptotics for minimal discrete energy on the sphere, Trans. Am. Math. Soc., 350, 523-538, (1998) · Zbl 0896.52019 · doi:10.1090/S0002-9947-98-02119-9
[25] Larcher, H, Solution of a geometric problem by fejes Tóth, Mich. Math. J., 9, 45-51, (1962) · Zbl 0106.36602 · doi:10.1307/mmj/1028998619
[26] Matoušek, J.: Geometric Discrepancy. An Illustrated Guide. Springer, Berlin (1999) · Zbl 0930.11060 · doi:10.1007/978-3-642-03942-3
[27] Nielsen, F, On the sum of the distances between \(n\) points on a sphere, Nordisk Mat. Tidskr., 13, 45-50, (1965) · Zbl 0132.17403
[28] Plan, Y., Vershynin, R.: Dimension reduction by random uniform tessellation. Discrete Comput. Geom. to appear · Zbl 1296.52014
[29] Schoenberg, I, Some extremal problems for positive definite sequences and related extremal convex conformal maps of the circle, Nederl. Akad. Wetensch. Proc. Ser A, 20, 28-37, (1958) · Zbl 0079.10005 · doi:10.1016/S1385-7258(58)50005-5
[30] Skriganov, M.: Point distributions in compact metric spaces, to appear, available at arXiv:1512.00364 · Zbl 1388.11052
[31] Sperling, G, Lösung einer elementargeometrischen frage von fejes Tóth. (German), Arch. Math., 11, 69-71, (1960) · Zbl 0091.35701 · doi:10.1007/BF01236910
[32] Stolarsky, KB, Sums of distances between points on a sphere, II. Proc. Am. Math. Soc., 41, 575-582, (1973) · Zbl 0274.52012 · doi:10.1090/S0002-9939-1973-0333995-9
[33] Stolarsky, KB, Spherical distributions of \(N\) points with maximal distance sums are well spaced, Proc. Am. Math. Soc., 48, 203-206, (1975) · Zbl 0295.52007
[34] Torquato, S.: Reformulation of the covering and quantizer problems as ground states of interacting particles. Phys. Rev. E 82(5), 1-52 (2010) · Zbl 0553.51013
[35] Wagner, G, On means of distances on the surface of a sphere, II. Upper bounds. Pac. J. Math., 154, 381-396, (1992) · Zbl 0767.11033 · doi:10.2140/pjm.1992.154.381
[36] Woźniakowski, H, Average case complexity of multivariate integration, Bull. Am. Math. Soc., 24, 185-194, (1991) · Zbl 0729.65010 · doi:10.1090/S0273-0979-1991-15985-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.