×

Transversal connecting orbits from shadowing. (English) Zbl 1120.65131

The paper is the last in a series of six works in which the authors analyse, in a fairly sophisticated way, the shadowing phenomenon in the theory of dynamical systems. In this paper they answer the following important question: “Given that one knows a connecting orbit exists, what is a good way to compute it?” In other words, they give “a rigorous method to verify that a numerically computed orbit is shadowed by a true connecting orbit”. The central result is the connecting orbit shadowing theorem. All the details of its proof are provided and hints of its implementation are suggested. Numerical experiments refer to the classical Lorenz model. They underline the effectiveness of the analytic results.

MSC:

65P20 Numerical chaos
37C29 Homoclinic and heteroclinic orbits for dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Software:

RODES

References:

[1] ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754. Institute of Electrical and Electronic Engineers, Inc., New York (1985)
[2] Beyn, W.-J.; Kloeden, P.; Palmer, K., On well-posed problems for connecting orbits in dynamical systems, Chaotic Numerics, Contemporary Mathematics, vol. 172, 131-168 (1994), Providence: American Mathematical Society, Providence · Zbl 0813.58046
[3] Birkhoff, G., Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Novi. Lyncaei, 1, 85-216 (1935) · JFM 60.1340.02
[4] Coomes, B. A.; Koçak, H.; Palmer, K. J.; Kloeden, P.; Palmer, K., Periodic shadowing, Chaotic Numerics, Contemporary Mathematics, vol. 172, 115-130 (1994), Providence: American Mathematical Society, Providence · Zbl 0808.34059
[5] Coomes, B. A.; Koçak, H.; Palmer, K. J., A shadowing theorem for ordinary differential equations, Z. Agnew Math. Phys. (ZAMP), 46, 85-106 (1995) · Zbl 0826.58027 · doi:10.1007/BF00952258
[6] Coomes, B. A.; Koçak, H.; Palmer, K. J., Rigorous computational shadowing of orbits of ordinary differential equations, Numer. Math., 69, 401-421 (1995) · Zbl 0822.65048 · doi:10.1007/s002110050100
[7] Coomes, B. A.; Koçak, H.; Palmer, K. J., Long periodic shadowing, Numer. Algorithms, 14, 55-78 (1997) · Zbl 0890.65086 · doi:10.1023/A:1019148510433
[8] Coomes, B. A.; Koçak, H.; Palmer, K. J., Computation of long periodic orbits in chaotic dynamical systems, Aust. Math. Soc. Gazette, 24, 183-190 (1997) · Zbl 0922.58066
[9] Coomes, B. A.; Koçak, H.; Palmer, K. J., Homoclinic shadowing, J. Dyn. Diff. Equ., 17, 175-215 (2005) · Zbl 1078.37013 · doi:10.1007/s10884-005-3146-x
[10] Dieci, L.; Rebaza, J., Point-to-periodic and periodic-to-periodic connections, Bit Numer. Math., 44, 41-62 (2004) · Zbl 1052.65113
[11] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. In: Lecture Notes in Mathematics, vol. 840. Springer, New York (1981) · Zbl 0456.35001
[12] Kantorovich, L.V., Akilov, G.P.: (1959) Functional Analysis in Normed Spaces. Functional Analysis, 2nd edn. FIZMATGIZ, Moscow. Pergamon Press, New York (1982) · Zbl 0127.06102
[13] Kirchgraber, U.; Stoffer, D., Possible chaotic motion of comets in the Sun-Jupiter system—a computer-assisted approached based on shadowing, Nonlinearity, 17, 281-300 (2004) · Zbl 1080.70006 · doi:10.1088/0951-7715/17/1/016
[14] Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D., Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10, 427-469 (2000) · Zbl 0987.70010 · doi:10.1063/1.166509
[15] Palmer, K. J., Shadowing in Dynamical Systems (2000), Dordrecht: Kluwer, Dordrecht · Zbl 0997.37001
[16] Pampel, T., Numerical approximation of connecting orbits with asymptotic rate, Numer. Math., 90, 309-348 (2001) · Zbl 0994.65137 · doi:10.1007/s002110100302
[17] Poincaré, H., Sur le problème des trois corps et les équations de la dynamique, Acta Math., 13, 1-270 (1890) · JFM 22.0907.01
[18] Sil’nikov, L. P., On a Poincaré-Birkhoff problem, Math. USSR-Sb., 3, 353-371 (1967) · Zbl 0244.34033 · doi:10.1070/SM1967v003n03ABEH002748
[19] Sil’nikov, L.P.: Homoclinic orbits: since Poincaré till today. Preprint ISSN 0946-8633, Weierstrass-Institut fur Angewandte Analysis und Stochastik (2000)
[20] Slyusarchuk, V. E., Exponential dichotomy for solutions of discrete systems, Ukrain. Math. J., 35, 98-103 (1983) · Zbl 0543.93060 · doi:10.1007/BF01093176
[21] Smale, S.: Diffeomorphisms with many periodic points. In: Differential and Combinatorial Topology. Princeton University Press, Princeton (1965) · Zbl 0142.41103
[22] Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2, 53-117 (2002). Available from http://www.math.uu.se/warwick/ · Zbl 1047.37012
[23] Wilczak, D.; Zgliczynski, P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem—a computer assisted proof, Commun. Math. Phys., 234, 37-75 (2003) · Zbl 1055.70005 · doi:10.1007/s00220-002-0709-0
[24] Wilkinson, J. H., Rounding Errors in Algebraic Processes (1963), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 1041.65502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.