×

Reciprocal relations of Bernoulli and Euler numbers/polynomials. (English) Zbl 1397.11055

Summary: By means of the symmetric summation theorem on polynomial differences due to the second author and P. Magli [Eur. J. Comb. 28, No. 3, 921–930 (2007; Zbl 1125.05012)], we examine Bernoulli and Euler polynomials of higher order. Several reciprocal relations on Bernoulli and Euler numbers and polynomials are established, including some recent ones obtained by T. Agoh [J. Number Theory 176, 149–173 (2017; Zbl 1422.11038)].

MSC:

11B68 Bernoulli and Euler numbers and polynomials
05A10 Factorials, binomial coefficients, combinatorial functions
Full Text: DOI

References:

[1] Stromberg, KR., An introduction to classical real analysis, (1981), Wadsworth International Group, Belmont, CA · Zbl 0454.26001
[2] Apostol, TM., Introduction to analytic number theory, (1976), Springer-Verlag, Heidelberg · Zbl 0335.10001
[3] Bernoulli numbers, Euler-Maclaurin formula. Mathematical methods for physicists. §5.9, 3rd ed. Orlando, FL: Academic Press; 1985. p. 327-338
[4] Comtet, L., Advanced combinatorics, (1974), Dordrecht-Holland: D. Reidel Publishing Company · Zbl 0283.05001
[5] Graham, RL; Knuth, DE; Patashnik, O., Concrete mathematics, (1994), Addison-Wesley Publishing Company, Reading, MA · Zbl 0836.00001
[6] Agoh, T; Dilcher, K., Convolution identities and lacunary recurrences for Bernoulli numbers, J Number Theory, 124, 105-122, (2007) · Zbl 1137.11014 · doi:10.1016/j.jnt.2006.08.009
[7] Carlitz, L., Multiplication formulas for generalized Bernoulli and Euler polynomials, Duke Math J, 27, 4, 537-545, (1960) · Zbl 0132.05503 · doi:10.1215/S0012-7094-60-02751-4
[8] Chu, W., Reciprocal formulae for convolutions of Bernoulli and Euler polynomials, Rend Mat Appl, 32, 1, 17-74, (2012) · Zbl 1270.11017
[9] Chu, W; Wang, CY., Convolution formulae for Bernoulli numbers, Integral Transforms Spec Funct, 21, 6, 437-457, (2010) · Zbl 1214.11030 · doi:10.1080/10652460903360861
[10] Chu, W; Zhou, RR., Convolutions of the Bernoulli and Euler polynomials, Sarajevo J Math, 6, 2, 147-163, (2010) · Zbl 1232.11026
[11] Dilcher, K., Sums of products of Bernoulli numbers, J Number Theory, 60, 1, 23-41, (1996) · Zbl 0863.11011 · doi:10.1006/jnth.1996.0110
[12] Chu, W; Magli, P., Summation formulae on reciprocal sequences, Eur J Combin, 28, 3, 921-930, (2007) · Zbl 1125.05012 · doi:10.1016/j.ejc.2005.10.012
[13] Agoh, T., Shortened recurrence relations for generalized Bernoulli numbers and polynomials, J Number Theory, 176, 149-173, (2017) · Zbl 1422.11038 · doi:10.1016/j.jnt.2016.12.014
[14] McCarthy, PJ., Some irreducibility theorems for Bernoulli polynomials of higher order, Duke Math J, 27, 3, 313-318, (1960) · Zbl 0178.37302 · doi:10.1215/S0012-7094-60-02728-9
[15] Luo, QM., Euler polynomials of higher order involving the Stirling numbers of the second kind, Austral Math Soc Gaz, 31, 3, 194-196, (2004) · Zbl 1087.11011
[16] Nörlund, NE., Vorlesungen über Differenzenrechnung, (1924), Springer-Verlag, Berlin · JFM 50.0315.02
[17] Gessel, IM., Applications of the classical umbral calculus, Algebr Univ, 49, 4, 397-434, (2003) · Zbl 1092.05005 · doi:10.1007/s00012-003-1813-5
[18] Kaneko, M., A recurrence formula for the Bernoulli numbers, Proc Japan Acad Ser A Math Sci, 71, 8, 192-193, (1995) · Zbl 0854.11012 · doi:10.3792/pjaa.71.192
[19] Neuman, CP; Schonbach, DI., Valuation of sums of convolved powers using Bernoulli numbers, Siam Rev, 19, 1, 90-99, (1977) · Zbl 0355.65002 · doi:10.1137/1019006
[20] Erdélyi, A; Magnus, W; Oberhettinger, F, Higher transcendental functions, 3, (1953), McGraw-Hill, New York · Zbl 0051.30303
[21] Karande, BK; Thakare, NK., On the unification of bernoullli and Euler polynomials, Indian J Pure Appl Math, 6, 1, 98-107, (1975) · Zbl 0343.33010
[22] Kim, DS; Kim, T., Higher-order Frobenius–Euler and poly-Bernoulli mixed-type polynomials, Adv Differ Equ, 2013, 251, (2013) · Zbl 1375.11025 · doi:10.1186/1687-1847-2013-251
[23] Kurt, B; Simsek, Y., On the generalized Apostol-type Frobenius–Euler polynomials, Adv Differ Equ, 2013, 1, (2013) · Zbl 1365.05013 · doi:10.1186/1687-1847-2013-1
[24] Srivastava, HM; Boutiche, MA; Rahmani, M., Some explicit formulas for the Frobenius–Euler polynomials of higher order, Appl Math Inf Sci, 11, 2, 621-626, (2017) · doi:10.18576/amis/110234
[25] Kim, T., Identities involving Frobenius–Euler polynomials arising from non-linear differential equations, J Number Theory, 132, 2854-2865, (2012) · Zbl 1262.11024 · doi:10.1016/j.jnt.2012.05.033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.