×

\(Q\widetilde{Q}\)-systems for twisted quantum affine algebras. (English) Zbl 1536.17023

The motivation of the paper is the conjectural correspondence between quantum \({}^{L}\hat{\mathfrak{g}}\)-KdV Hamiltonians and affine \(\hat{\mathfrak{g}}\)-opers through \(Q\widetilde{Q}\)-systems for twisted quantum affine algebras. The author aimed to establish the twisted \(Q\widetilde{Q}\)-systems in this correspondence. Different from the non-twisted case, the author proposed a new method to avoid using shifted quantum affine algebras which has not been defined for twisted types, and to avoid using \(\hat{\mathfrak{sl}}_2\)-reductions in the case \(A_{2n}^{(2)}\).
For this purpose, the author first defined the category \(\mathcal{O}\) of the Borel subalgebra \(\mathcal{U}_q(\mathfrak{b}^{\sigma})\) of twisted quantum affine algebras by mimicking the non-twisted case in the work of D. Hernandez and M. Jimbo. The author proved that the simple objects in the category \(\mathcal{O}\) are the \(l\)-highest weight modules by standard arguments. More precisely, the allowed highest \(l\)-weights are those tuples of rational functions \((\psi_i(u))_{i \in I}\) which are compatible with the Dynkin diagram automorphism in the sense that \(\psi_{\sigma(i)}(u) = \psi_{i}(\omega u)\), where \(\omega\) is an \(M\)th root of unity, where \(M\) is the order of \(\sigma\). To prove it, the author needed to show that the positive and negative prefundamental representations \(L_{i,a}^{\pm}\) are in the category \(\mathcal{O}\). These prefundamental representations were constructed by D. Hernandez with the same method in non-twisted case. The author verified that these constructions still work in the twisted case.
Then the author defined the Grothendieck ring \(K_0(\mathcal{O})\) of the category \(\mathcal{O}\) and also the \(q\)-character of modules in \(\mathcal{O}\). He proved that the \(q\)-character is a ring isomorphism \[ \chi_q^{\sigma} : K_0(\mathcal{O}) \to \mathcal{E}_{l}^{\sigma} \] to some commutative ring. This is also true in the non-twisted case by the same argument. In particular, the Grothendieck ring \(K_0(\mathcal{O})\) is commutative.
The relation between the non-twisted quantum affine algebra \(\mathcal{U}_q(\mathcal{L}\mathfrak{g})\) and the twisted quantum affine algebra \(\mathcal{U}_q(\mathcal{L}\mathfrak{g})^{\sigma}\) associated by the automorphism \(\sigma\) of Dynkin diagram is useful to generalize known results in non-twisted types to twisted types. As an application, the author derived the \(TQ\)-relations for twisted types and relate them to the \(TQ\)-relations for non-twisted types.
But it is not clear if this relation holds in general. Moreover, the author proved that this conjecture holds for another particular class of representations in \(\mathcal{O}\): the representation \(X_{\bar{i},a} = L(\widetilde{\mathbf{\Psi}}_{i,a})\). As a consequence, the \(Q\widetilde{Q}\)-systems for twisted quantum affine algebras can be proved by applying the conjecture on \(X_{\bar{i},a}\) and on \(L_{\bar{i},a}^+\).
As an application of the \(Q\widetilde{Q}\)-systems of twisted types, the author derived the Bethe Ansatz equations for twisted quantum affine algebras by applying the transfer matrices on \(Q\widetilde{Q}\)-systems.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
18E10 Abelian categories, Grothendieck categories

Citations:

Zbl 1397.81060

References:

[1] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys., 177, 2, 381-398 (1996) · Zbl 0851.35113 · doi:10.1007/BF02101898
[2] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory. II. \({\rm Q}\)-operator and DDV equation, Commun. Math. Phys., 190, 2, 247-278 (1997) · Zbl 0908.35114 · doi:10.1007/s002200050240
[3] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory. III. The Yang-Baxter relation, Commun. Math. Phys., 200, 2, 297-324 (1999) · Zbl 1057.81531 · doi:10.1007/s002200050531
[4] Chari, V., Braid group actions and tensor products, Int. Math. Res. Not., 7, 357-382 (2002) · Zbl 0990.17009 · doi:10.1155/S107379280210612X
[5] Chari, V.; Pressley, A., A Guide to Quantum Groups (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0839.17009
[6] Chari, V.; Pressley, A., Twisted quantum affine algebras, Commun. Math. Phys., 196, 2, 461-476 (1998) · Zbl 0915.17013 · doi:10.1007/s002200050431
[7] Damiani, I.: The \(R\)-matrix for (twisted) affine quantum algebras, Representations and quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, pp. 89-144 (2000) · Zbl 1007.17012
[8] Damiani, I., Drinfeld realization of affine quantum algebras: the relations, Publ. Res. Inst. Math. Sci., 48, 3, 661-733 (2012) · Zbl 1297.17009 · doi:10.2977/PRIMS/86
[9] Damiani, I., From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity, Publ. Res. Inst. Math. Sci., 51, 1, 131-171 (2015) · Zbl 1394.17036 · doi:10.4171/PRIMS/150
[10] Dorey, P.; Dunning, C.; Tateo, R., The ODE/IM correspondence, J. Phys. A, 40, 32, R205-R283 (2007) · Zbl 1120.81044 · doi:10.1088/1751-8113/40/32/R01
[11] Enriquez, B.; Khoroshkin, S.; Pakuliak, S., Weight functions and Drinfeld currents, Commun. Math. Phys., 276, 3, 691-725 (2007) · Zbl 1140.17010 · doi:10.1007/s00220-007-0351-y
[12] Feigin, B.; Edward, F., Quantization of soliton systems and Langlands duality, Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., 61, 185-274 (2011) · Zbl 1245.81062 · doi:10.2969/aspm/06110185
[13] Feigin, B.; Jimbo, M.; Miwa, T.; Mukhin, E., Finite type modules and Bethe Ansatz equations, Ann. Henri Poincaré, 18, 8, 2543-2579 (2017) · Zbl 1407.82019 · doi:10.1007/s00023-017-0577-y
[14] Frenkel, E.; Hernandez, D., Baxter’s relations and spectra of quantum integrable models, Duke Math. J., 164, 12, 2407-2460 (2015) · Zbl 1332.82022 · doi:10.1215/00127094-3146282
[15] Frenkel, E.; Hernandez, D., Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers, Commun. Math. Phys., 362, 2, 361-414 (2018) · Zbl 1397.81060 · doi:10.1007/s00220-018-3194-9
[16] Frenkel, E., Hernandez, D., Reshetikhin, N.: Folded quantum integrable models and deformed w-algebras, arXiv preprint arXiv:2110.14600 (2021) · Zbl 1513.81077
[17] Frenkel, E., Reshetikhin, N., The \(q\)-characters of representations of quantum affine algebras and deformations of W-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, pp. 163-205 (1999) · Zbl 0973.17015
[18] Garbali, A.: The izergin-korepin model, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, (2015) · Zbl 1367.82001
[19] Hernandez, D., The Kirillov-Reshetikhin conjecture and solutions of \(T\)-systems, J. Reine Angew. Math., 596, 63-87 (2006) · Zbl 1160.17010
[20] Hernandez, D., Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN, 1, 149-193 (2010) · Zbl 1242.17017
[21] Hernandez, D., Simple tensor products, Invent. Math., 181, 3, 649-675 (2010) · Zbl 1221.17015 · doi:10.1007/s00222-010-0256-9
[22] Hernandez, D.: Representations of shifted quantum affine algebras, arXiv preprint arXiv:2010.06996 (2020)
[23] Hernandez, D.; Jimbo, M., Asymptotic representations and Drinfeld rational fractions, Compos. Math., 148, 5, 1593-1623 (2012) · Zbl 1266.17010 · doi:10.1112/S0010437X12000267
[24] Jantzen, J.C.: Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6. American Mathematical Society, Providence, RI (1996) · Zbl 0842.17012
[25] Jing, N.; Misra, KC, Vertex operators for twisted quantum affine algebras, Trans. Amer. Math. Soc., 351, 4, 1663-1690 (1999) · Zbl 1037.17033 · doi:10.1090/S0002-9947-99-02098-X
[26] Victor, G., KAC, Infinite-dimensional Lie Algebras (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0716.17022
[27] Kashiwara, M., On level-zero representations of quantized affine algebras, Duke Math. J., 112, 1, 117-175 (2002) · Zbl 1033.17017 · doi:10.1215/S0012-9074-02-11214-9
[28] Kuniba, A.; Suzuki, J., Functional relations and analytic Bethe ansatz for twisted quantum affine algebras, J. Phys. A, 28, 3, 711-722 (1995) · Zbl 0855.17023 · doi:10.1088/0305-4470/28/3/024
[29] Masoero, D.; Raimondo, A.; Valeri, D., Bethe ansatz and the spectral theory of affine Lie algebra-valued connections I. The simply-laced case, Commun. Math. Phys., 344, 3, 719-750 (2016) · Zbl 1347.82011 · doi:10.1007/s00220-016-2643-6
[30] Masoero, D.; Raimondo, A.; Valeri, D., Bethe ansatz and the spectral theory of affine Lie algebra-valued connections II: The non simply-laced case, Commun. Math. Phys., 349, 3, 1063-1105 (2017) · Zbl 1359.82010 · doi:10.1007/s00220-016-2744-2
[31] Varagnolo, M.; Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J., 111, 3, 509-533 (2002) · Zbl 1011.17012 · doi:10.1215/S0012-7094-02-11135-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.