×

On the fractional derivative of Dirac delta function and its application. (English) Zbl 1481.26005

Summary: The Dirac delta function and its integer-order derivative are widely used to solve integer-order differential/integral equation and integer-order system in related fields. On the other hand, the fractional-order system gets more and more attention. This paper investigates the fractional derivative of the Dirac delta function and its Laplace transform to explore the solution for fractional-order system. The paper presents the Riemann-Liouville and the Caputo fractional derivative of the Dirac delta function, and their analytic expression. The Laplace transform of the fractional derivative of the Dirac delta function is given later. The proposed fractional derivative of the Dirac delta function and its Laplace transform are effectively used to solve fractional-order integral equation and fractional-order system, the correctness of each solution is also verified.

MSC:

26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
44A10 Laplace transform
45D05 Volterra integral equations

References:

[1] Dirac, P. A. M., Quantum Mechanics (1958), London: Oxford University Press, London · Zbl 0080.22005
[2] Namias, V., Application of the Dirac delta function to electric charge and multipole distribution- ns, American Journal of Physics, 45, 7, 624-630 (1979)
[3] Sanders, S.; Yokoyama, K., The Dirac delta function in two settings of Reverse Mathematics, Archive for Mathematical Logic, 51, 1-2, 99-121 (2012) · Zbl 1248.03023 · doi:10.1007/s00153-011-0256-5
[4] Yin, H.; Kobayashi, Y.; Hoshino, Y.; Emaru, T., Decomposed dynamic control for flexible manipulator in consideration of Nonlinearity, Journal of System Design and Dynamics, 5, 2, 219-230 (2011) · doi:10.1299/jsdd.5.219
[5] Atkinson, D. A.; Crater, H. W., An exact treatment of the Dirac delta function potential in the Schrödinger equation, American Journal of Physics, 43, 4, 301-304 (1975) · doi:10.1119/1.9857
[6] Dorf, R. C.; Bishop, R. H., Modern Control Systems (2011), Upper Saddle River, NJ, US: Pearson Education, Upper Saddle River, NJ, US
[7] Duan, G. R., Analysis and Design of Descriptor Linear Systems (2010), New York, NY, US: Springer Press, New York, NY, US · Zbl 1227.93001
[8] Campbell, S. L. V., Singular systems of differential equations II (1982), London: Pitman, London · Zbl 0482.34008
[9] Boykin, T. B., Derivatives of the Dirac delta function by explicit construction of sequences, American Journal of Physics, 71, 5, 462-468 (2003) · Zbl 1220.46026 · doi:10.1119/1.1557302
[10] Debnath, L.; Bhatta, D., Integral Transforms and Their Applications (2007), New York, NY, US: CRC Press, New York, NY, US
[11] Podlubny, I., Fractional Differential Equations (1999), San Diego, CA, US: Acdemic Press, San Diego, CA, US · Zbl 0918.34010
[12] Diethelm, K.; Ford, N. J., Analysis of Fractional Differential Equations, Journal of Mathematical Analysis and Applications, 265, 2, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[13] Asgari, M., Numerical solution for solving a system of fractional integro-differential equations, IAENG International Journal of Applied Mathematics, 45, 2, 85-91 (2015)
[14] Ji, Y.; Qiu, J., Stabilization of fractional-order singular uncertain systems, ISA transactions, 56, 53-64 (2015) · doi:10.1016/j.isatra.2014.11.016
[15] Tavakoli-Kakhki, M.; Haeri, M.; Saleh Tavazoei, M., Simple fractional order model structures and their applications in control system design, European Journal of Control, 16, 6, 680-694 (2010) · Zbl 1216.93053 · doi:10.3166/ejc.16.680-694
[16] Vanterler da C. Sousa, J.; Capelas de Oliveira, E., On the \(\Psi \)-fractional integral and applications, Computational and Applied Mathematics, 38, 1, 4 (2019) · Zbl 1463.26016 · doi:10.1007/s40314-019-0774-z
[17] Sousa, J. V. C.; de Oliveira, E. C., On the \(\psi \)-Hilfer fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 60, 72-91 (2018) · Zbl 1470.26015 · doi:10.1016/j.cnsns.2018.01.005
[18] Sousa, J. V. C.; de Oliveira, E. C., Leibniz type rule: \( \psi \)-Hilfer fractional operator, Communications in Nonlinear Science and Numerical Simulation, 77, 305-311 (2019) · Zbl 1477.26012 · doi:10.1016/j.cnsns.2019.05.003
[19] Nicos, M., The fractional derivative of the Dirac delta function and new results on the inverse Laplace transform of irrational functions (2020), http://arxiv.org/abs/2006.04966v1
[20] Debnath, L.; Bhatta, D., Integral Transforms and Their Applications (2007), New York, NY, US: CRC Press, New York, NY, US
[21] Dorf, R. C.; Bishop, R. H., Modern Control Systems (2011), Upper Saddle River, NJ, US: Pearson Education, Upper Saddle River, NJ, US
[22] Wazwaz, A. M., Linear and nonlinear integral equations (2011), Berlin, Germany: Springer, Berlin, Germany · Zbl 1227.45002
[23] Marir, S.; Chadli, M.; Bouagada, D., A novel approach of admissibility for singular linear continuous-time fractional-order systems, International Journal of Control, Automation and Systems, 15, 2, 959-964 (2017) · doi:10.1007/s12555-016-0003-0
[24] Morita, T.; Sato, K. I., Neumann-series solution of fractional differential equation, Interdisciplinary Information Sciences, 16, 1, 127-137 (2010) · Zbl 1190.26003 · doi:10.4036/iis.2010.127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.