×

Hopf bifurcations in the full SKT model and where to find them. (English) Zbl 1498.35037

Summary: In this paper, we consider the Shigesada-Kawasaki-Teramoto (SKT) model, which presents cross-diffusion terms describing competition pressure effects. Even though the reaction part does not present the activator-inhibitor structure, cross-diffusion can destabilise the homogeneous equilibrium. However, in the full cross-diffusion system and weak competition regime, the cross-diffusion terms have an opposite effect and the bifurcation structure of the system modifies as the interspecific competition pressure increases. The major changes in the bifurcation structure, the type of pitchfork bifurcations on the homogeneous branch, as well as the presence of Hopf bifurcation points are here investigated. Through weakly nonlinear analysis, we can predict the type of pitchfork bifurcation. Increasing the additional cross-diffusion coefficients, the first two pitchfork bifurcation points from super-critical become sub-critical, leading to the appearance of a multi-stability region. The interspecific competition pressure also influences the possible appearance of stable time-period spatial patterns appearing through a Hopf bifurcation point.

MSC:

35B32 Bifurcations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
65P30 Numerical bifurcation problems
92D25 Population dynamics (general)

References:

[1] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅰ. Abstract evolution equations, Nonlinear Anal., 12, 895-919 (1988) · Zbl 0666.35043 · doi:10.1016/0362-546X(88)90073-9
[2] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differential and Integral Equations, 3, 13-75 (1990) · Zbl 0729.35062
[3] M. Beck; J. Knobloch; D. J. B. Lloyd; B. Sandstede; T. Wagenknecht, Snakes, ladders, and isolas of localized patterns, SIAM J. Math. Anal., 41, 936-972 (2009) · Zbl 1200.37015 · doi:10.1137/080713306
[4] M. Breden, Computer-assisted proofs for some nonlinear diffusion problems, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), Paper No. 106292, 22 pp. · Zbl 1539.35107
[5] M. Breden; R. Castelli, Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof, J. Differential Equations, 264, 6418-6458 (2018) · Zbl 1458.35220 · doi:10.1016/j.jde.2018.01.033
[6] M. Breden; C. Kuehn; C. Soresina, On the influence of cross-diffusion in pattern formation, J. Comput. Dyn., 8, 213-240 (2021) · Zbl 1469.35202 · doi:10.3934/jcd.2021010
[7] M. Breden; J.-P. Lessard; M. Vanicat, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system, Acta Appl. Math., 128, 113-152 (2013) · Zbl 1277.65088 · doi:10.1007/s10440-013-9823-6
[8] J. Burke and E. Knobloch, Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E, 73 (2006), 056211, 15 pp. · Zbl 1236.35144
[9] J. Burke; E. Knobloch, Snakes and ladders: Localized states in the Swift-Hohenberg equation, Phys. Lett. A, 360, 681-688 (2007) · Zbl 1236.35144 · doi:10.1016/j.physleta.2006.08.072
[10] F. Conforto, L. Desvillettes and C. Soresina, About reaction-diffusion systems involving the Holling-type Ⅱ and the Beddington-DeAngelis functional responses for predator-prey models, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 24, 39 pp. · Zbl 1392.35181
[11] P. Coullet; C. Riera; C. Tresser, Stable static localized structures in one dimension, Phys. Rev. Lett., 84, 3069 (2000) · doi:10.1103/PhysRevLett.84.3069
[12] L. Desvillettes; T. Lepoutre; A. Moussa; A. Trescases, On the entropic structure of reaction-cross diffusion systems, Comm. Partial Differential Equations, 40, 1705-1747 (2015) · Zbl 1331.35179 · doi:10.1080/03605302.2014.998837
[13] L. Desvillettes; C. Soresina, Non-triangular cross-diffusion systems with predator-prey reaction terms, Ric. Mat., 68, 295-314 (2019) · Zbl 1420.35435 · doi:10.1007/s11587-018-0403-y
[14] L. Desvillettes; A. Trescases, New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430, 32-59 (2015) · Zbl 1319.35077 · doi:10.1016/j.jmaa.2015.03.078
[15] J. Diamond, Assembly of species communities, in Ecology and Evolution of Communities (eds. M. Cody and D. J.M.), Cambridge, Mass: Harvard Univ Press, 1975,342-444.
[16] T. Dohnal, J. Rademacher, H. Uecker and D. Wetzel, \( {\texttt{pde2path}} 2.0\): Multi-parameter continuation and periodic domains, in Proceedings of the 8th European Nonlinear Dynamics Conference, ENOC, vol. 2014, 2014.
[17] N. Ehstand, C. Kuehn and C. Soresina, Numerical continuation for fractional PDEs: Sharp teeth and bloated snakes, Commun. Nonlinear Sci. Numer. Simul., 98 (2021), Paper No. 105762, 23 pp. · Zbl 1471.65138
[18] S.-I. Ei; M. Mimura, Pattern formation in heterogeneous reaction-diffusion-advection systems with an application to population dynamics, SIAM J. Math. Anal., 21, 346-361 (1990) · Zbl 0692.34002 · doi:10.1137/0521019
[19] G. Galiano; M. L. Garzón; A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., 93, 655-673 (2003) · Zbl 1018.65115 · doi:10.1007/s002110200406
[20] G. Gambino; M. C. Lombardo; S. Lupo; M. Sammartino, Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion, Ric. Mat., 65, 449-467 (2016) · Zbl 1361.35086 · doi:10.1007/s11587-016-0267-y
[21] G. Gambino; M. C. Lombardo; M. Sammartino, Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comput. Simulation, 82, 1112-1132 (2012) · Zbl 1320.35170 · doi:10.1016/j.matcom.2011.11.004
[22] G. Gambino; M. C. Lombardo; M. Sammartino, Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Anal. Real World Appl., 14, 1755-1779 (2013) · Zbl 1270.35088 · doi:10.1016/j.nonrwa.2012.11.009
[23] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin Heidelberg, Germany, 1981. · Zbl 0456.35001
[24] M. Iida; M. Mimura; H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53, 617-641 (2006) · Zbl 1113.92064 · doi:10.1007/s00285-006-0013-2
[25] M. Iida; H. Ninomiya; H. Yamamoto, A review on reaction-diffusion approximation, J. Elliptic Parabol. Equ., 4, 565-600 (2018) · Zbl 1404.35253 · doi:10.1007/s41808-018-0029-y
[26] H. Izuhara; S. Kobayashi, Spatio-temporal coexistence in the cross-diffusion competition system, Discrete Contin. Dyn. Syst. Ser. S, 14, 919-933 (2021) · Zbl 1468.37065 · doi:10.3934/dcdss.2020228
[27] H. Izuhara; M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38, 315-347 (2008) · Zbl 1162.35387
[28] A. Jüngel, Diffusive and nondiffusive population models, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Springer, 2010,397-425. · Zbl 1398.92205
[29] A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations, Springer, 2016. · Zbl 1361.35002
[30] Y. Kan-On, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23, 509-536 (1993) · Zbl 0792.35086
[31] K. Kishimoto; H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58, 15-21 (1985) · Zbl 0599.35080 · doi:10.1016/0022-0396(85)90020-8
[32] C. Kuehn, PDE Dynamics: An Introduction, SIAM, 2019. · Zbl 1451.35001
[33] C. Kuehn, N. Berglund, C. Bick, M. Engel, T. Hurth, A. Iuorio and C. Soresina, A general view on double limits in differential equations, Phys. D, 431 (2022), Paper No. 133105, 26 pp. · Zbl 1501.34001
[34] C. Kuehn and C. Soresina, Cross-diffusion induced instability on networks, in preparation. · Zbl 1451.35237
[35] C. Kuehn and C. Soresina, Numerical continuation for a fast reaction system and its cross-diffusion limit, Partial Differ. Equ. Appl., 1 (2020), Paper No. 7, 26 pp. · Zbl 1451.35237
[36] S. A. Levin, Dispersion and population interactions, The American Naturalist, 108, 207-228 (1974) · doi:10.1086/282900
[37] Y. Lou; W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131 (1996) · Zbl 0867.35032 · doi:10.1006/jdeq.1996.0157
[38] Y. Lou; W.-M. Ni; S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10, 435-458 (2004) · Zbl 1174.35360 · doi:10.3934/dcds.2004.10.435
[39] Y. Lou; W.-M. Ni; S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35, 1589-1607 (2015) · Zbl 1307.35040 · doi:10.3934/dcds.2015.35.1589
[40] H. Matano; M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19, 1049-1079 (1983) · Zbl 0548.35063 · doi:10.2977/prims/1195182020
[41] M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11, 621-635 (1981) · Zbl 0483.35045
[42] T. Mori; T. Suzuki; S. Yotsutani, Numerical approach to existence and stability of stationary solutions to a SKT cross-diffusion equation, Math. Models Methods Appl. Sci., 28, 2191-2210 (2018) · Zbl 1411.35164 · doi:10.1142/S0218202518400122
[43] W.-M. Ni; Y. Wu; Q. Xu, The existence and stability of nontrivial steady states for SKT competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34, 5271-5298 (2014) · Zbl 1326.35019 · doi:10.3934/dcds.2014.34.5271
[44] U. Prüfert, \( {\texttt{OOPDE}} \) - an object oriented approach to finite elements in MATLAB, 2014, Quickstart Guide.
[45] N. Shigesada; K. Kawasaki; E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[46] C. Soresina, Supplementary material, Matlab scripts for the bifurcation diagrams at https://github.com/soresina/fullSKT, 2021, Accessed March 16, 2021.
[47] C. Soresina, Supplementary material, Matlab scripts for the Stuart-Landau and Hopf coefficients at https://github.com/soresina/fullSKT-SL-H, 2021, Accessed April 22, 2021.
[48] H. Uecker, Hopf bifurcation and time periodic orbits with \({\texttt{pde2path}} \) - algorithms and applications, Commun. Comput. Phys., 25, 812-852 (2019) · Zbl 07417517 · doi:10.4208/cicp.oa-2017-0181
[49] H. Uecker, Continuation and bifurcation in nonlinear PDEs-Algorithms, applications, and experiments, Jahresber. Dtsch. Math.-Ver., 124, 43-80 (2022) · Zbl 1490.35002 · doi:10.1365/s13291-021-00241-5
[50] H. Uecker, Numerical Continuation and Bifurcation in Nonlinear PDEs, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2021. · Zbl 07417714
[51] H. Uecker; D. Wetzel; J. D. M. Rademacher, \( {\texttt{pde2path}} \) - A Matlab package for continuation and bifurcation in 2D elliptic systems, Numer. Math. Theory Methods Appl., 7, 58-106 (2014) · Zbl 1313.65311 · doi:10.4208/nmtma.2014.1231nm
[52] E. Wilson, Sociobiology: The New Synthesis, Cambridge: Harvard, 1975.
[53] D. J. Wollkind; V. S. Manoranjan; L. Zhang, Weakly nonlinear stability analyses of prototype reaction-diffusion model equations, SIAM Rev., 36, 176-214 (1994) · Zbl 0808.35056 · doi:10.1137/1036052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.