×

On the relation between quantum walks and absolute zeta functions. (English) Zbl 07886853

Summary: The quantum walk is a quantum counterpart of the classical random walk. On the other hand, the absolute zeta function can be considered as a zeta function over \(\mathbb{F}_1\). This paper presents a connection between the quantum walk and the absolute zeta function. First, we deal with a zeta function determined by a time evolution matrix of the Grover walk on a graph. The Grover walk is a typical model of the quantum walk. Then, we prove that the zeta function given by the quantum walk is an absolute automorphic form of weight depending on the number of edges of the graph. Furthermore we consider an absolute zeta function for the zeta function based on a quantum walk. As an example, we compute an absolute zeta function for the cycle graph and show that it is expressed as the multiple gamma function of order 2.

MSC:

81-XX Quantum theory

References:

[1] Andrews, GE; Askey, R.; Roy, R., Special Functions, 1999, Cambridge: Cambridge University Press, Cambridge · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[2] Bass, H., The Ihara-Selberg zeta function of a tree lattice, Int. J. Math., 3, 717-797, 1992 · Zbl 0767.11025 · doi:10.1142/S0129167X92000357
[3] Connes, A.; Consani, C., Schemes over \(\mathbb{F}_1\) and zeta functions, Compos. Math., 146, 1383-1415, 2010 · Zbl 1201.14001 · doi:10.1112/S0010437X09004692
[4] Godsil, C.; Zhan, H., Discrete Quantum Walks on Graphs and Digraphs, 2023, Cambridge: Cambridge University Press, Cambridge · Zbl 1519.81002 · doi:10.1017/9781009261692
[5] Ihara, Y., On discrete subgroups of the two by two projective linear group over \(p\)-adic fields, J. Math. Soc. Jpn., 18, 219-235, 1966 · Zbl 0158.27702 · doi:10.2969/jmsj/01830219
[6] Komatsu, T.; Konno, N.; Sato, I., Grover/zeta correspondence based on the Konno-Sato theorem, Quantum Inf. Process., 20, 268, 2021 · Zbl 1508.05085 · doi:10.1007/s11128-021-03214-w
[7] Komatsu, T.; Konno, N.; Sato, I., CTM/zeta correspondence, Quantum Stud. Math. Found., 9, 165-173, 2022 · Zbl 07899034 · doi:10.1007/s40509-021-00263-9
[8] Komatsu, T.; Konno, N.; Sato, I., Walk/zeta correspondence, J. Stat. Phys., 190, 36, 2023 · Zbl 1506.60046 · doi:10.1007/s10955-022-03052-9
[9] Konno, N.; Franz, U.; Schurmann, M., Quantum walks, Quantum Potential Theory, Lecture Notes in Mathematics, 309-452, 2008, Heidelberg: Springer, Heidelberg · Zbl 1329.82011 · doi:10.1007/978-3-540-69365-9_7
[10] Konno, N., An analogue of the Riemann hypothesis via quantum walks, Quantum Stud. Math. Found., 9, 367-379, 2022 · Zbl 07899045 · doi:10.1007/s40509-022-00273-1
[11] Konno, N.; Sato, I., On the relation between quantum walks and zeta functions, Quantum Inf. Process., 11, 341-349, 2012 · Zbl 1241.81045 · doi:10.1007/s11128-011-0250-1
[12] Kurokawa, N., Zeta functions over \({\mathbb{F} }_1 \), Proc. Jpn. Acad. Ser. A Math. Sci., 81, 180-184, 2005 · Zbl 1141.11316 · doi:10.3792/pjaa.81.180
[13] Kurokawa, N., Modern Theory of Trigonometric Functions, 2013, Tokyo: Iwanami Publication, Tokyo
[14] Kurokawa, N., Theory of Absolute Zeta Functions, 2016, Tokyo: Iwanami Publication, Tokyo
[15] Kurokawa, N.; Ochiai, H., Dualities for absolute zeta functions and multiple gamma functions, Proc. Jpn. Acad. Ser. A Math. Sci., 89, 75-79, 2013 · Zbl 1373.11063 · doi:10.3792/pjaa.89.75
[16] Kurokawa, N.; Tanaka, H., Absolute zeta functions and the automorphy, Kodai Math. J., 40, 584-614, 2017 · Zbl 1390.14067 · doi:10.2996/kmj/1509415235
[17] Kurokawa, N.; Tanaka, H., Absolute zeta functions and absolute automorphic forms, J. Geom. Phys., 126, 168-180, 2018 · Zbl 1416.11137 · doi:10.1016/j.geomphys.2018.01.014
[18] Manouchehri, K.; Wang, J., Physical Implementation of Quantum Walks, 2014, New York: Springer, New York · Zbl 1278.81010 · doi:10.1007/978-3-642-36014-5
[19] Norris, JR, Markov Chains, 1997, Cambridge: Cambridge University Press, Cambridge · Zbl 0873.60043 · doi:10.1017/CBO9780511810633
[20] Portugal, R., Quantum Walks and Search Algorithms, 2018, New York: Springer, New York · Zbl 1457.81004 · doi:10.1007/978-3-319-97813-0
[21] Ren, P.; Aleksic, T.; Emms, D.; Wilson, RC; Hancock, ER, Quantum walks, Ihara zeta functions and cospectrality in regular graphs, Quantum Inf. Process., 10, 405-417, 2011 · Zbl 1216.81043 · doi:10.1007/s11128-010-0205-y
[22] Soulé, C., Les variétés sur le corps à un élément, Mosc. Math. J., 4, 217-244, 2004 · Zbl 1103.14003 · doi:10.17323/1609-4514-2004-4-1-217-244
[23] Spitzer, F., Principles of Random Walk, 1976, New York: Springer, New York · Zbl 0359.60003 · doi:10.1007/978-1-4684-6257-9
[24] Venegas-Andraca, SE, Quantum walks: a comprehensive review, Quantum Inf. Process., 11, 1015-1106, 2012 · Zbl 1283.81040 · doi:10.1007/s11128-012-0432-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.