×

The finite type of modules of bounded projective dimension and Serre’s conditions. (English) Zbl 07902269

Summary: Let \(R\) be a commutative Noetherian ring. For a natural number \(k\), we prove that the class of modules of projective dimension bounded by \(k\) is of finite type if and only if \(R\) satisfies Serre’s condition \((S_k)\). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the \(k\)-dimensional version of the Govorov-Lazard theorem holds if and only if \(R\) satisfies the ‘almost’ Serre condition \((C_{k+1})\).
© 2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

MSC:

13C05 Structure, classification theorems for modules and ideals in commutative rings
13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.)
13C60 Module categories and commutative rings
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)

References:

[1] S. T.Aldrich, E. E.Enochs, O. M. G.Jenda, and L.Oyonarte, Envelopes and covers by modules of finite injective and projective dimensions, J. Algebra242 (2001), no. 2, 447-459. MR 1848954. · Zbl 0983.16003
[2] L.Angeleri Hügel, D.Herbera, and J.Trlifaj, Divisible modules and localization, J. Algebra294 (2005), no. 2, 519-551. MR 2183363. · Zbl 1117.13014
[3] L.Angeleri Hügel, D.Pospíšil, J.Šťovíček, and J.Trlifaj, Tilting, cotilting, and spectra of commutative Noetherian rings, Trans. Amer. Math. Soc.366 (2014), no. 7, 3487-3517. · Zbl 1291.13018
[4] L.Angeleri Hügel and J.Trlifaj, Direct limits of modules of finite projective dimension, Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math., vol. 236, Dekker, New York, 2004, pp. 27-44. MR 2050699. · Zbl 1066.16009
[5] H.Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc.102 (1962), no. 1, 18-29. · Zbl 0126.06503
[6] W.Bruns and J.Herzog, Cohen-Macaulay rings, Revised ed., Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1998. · Zbl 0909.13005
[7] S.Bazzoni and D.Herbera, One dimensional tilting modules are of finite type, Algebr. Represent. Theory11 (2008), no. 1, 43-61. MR 2369100. · Zbl 1187.16008
[8] S.Bazzoni and D.Herbera, Cotorsion pairs generated by modules of bounded projective dimension, Israel J. Math.174 (2009), 119-160. MR 2581211. · Zbl 1232.16009
[9] S.Bazzoni and J.Šťovíček, All tilting modules are of finite type, Proceedings of the American Mathematical Society135 (2007), no. 12, 3771-3781. · Zbl 1132.16008
[10] L. W.Christensen, H.‐B.Foxby, and A.Frankild, Restricted homological dimensions and Cohen-Macaulayness, J. Algebra251 (2002), no. 1, 479-502. · Zbl 1073.13501
[11] P. C.Eklof and J.Trlifaj, How to make Ext vanish, Bull. Lond. Math. Soc.33 (2001), no. 1, 41-51. MR 1798574. · Zbl 1030.16004
[12] R.Göbel and J.Trlifaj, Approximations and endomorphism algebras of modules: Volume 1 - Approximations, 2nd revised and extended ed., De Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2012. · Zbl 1292.16001
[13] Y.Han, \(D\) rings, Acta Math. Sinica (Chinese Ser.)41 (1998), no. 5, 1047-1052. MR 1681796. · Zbl 1010.13006
[14] M.Hrbek and G.Le Gros, Restricted injective dimensions over Cohen-Macaulay rings, Algebr. Represent. Theory27 (2024), no. 2, 1373-1393. MR 4741526. · Zbl 07845603
[15] B.Holmes, A generalized Serre’s condition, Comm. Algebra47 (2019), no. 7, 2689-2701. MR 3960357. · Zbl 1411.13017
[16] M.Hrbek, L.Positselski, and A.Slávik, Countably generated flat modules are quite flat, J. Commut. Algebra14 (2022), no. 1, 37-54. MR 4430700. · Zbl 1495.13018
[17] M.Hrbek and J.Šťovíček, Tilting classes over commutative rings, Forum Math.32 (2020), no. 1, 235-267. MR 4048464. · Zbl 1454.13020
[18] C.Ionescu, More properties of almost Cohen-Macaulay rings, J. Commut. Algebra7 (2015), no. 3, 363-372. MR 3433987. · Zbl 1332.13012
[19] C. U.Jensen, On the vanishing of \(\varprojlim^{(i)}\), J. Algebra15 (1970), 151-166. MR 260839. · Zbl 0199.36202
[20] M.‐C.Kang, Almost Cohen-Macaulay modules, Comm. Algebra29 (2001), no. 2, 781-787. MR 1841999. · Zbl 1030.13007
[21] H.Lenzing, Homological transfer from finitely presented to infinite modules, Abelian group theory (Honolulu, Hawaii, 1983), Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 734-761. MR 722664. · Zbl 0529.16016
[22] H.Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. · Zbl 0666.13002
[23] M.Raynaud and L.Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math.13 (1971), 1-89. MR 0308104 · Zbl 0227.14010
[24] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu.
[25] B.Stenström, Rings of quotients. An introduction to methods of ring theory, Springer‐Verlag, New York‐Heidelberg, 1975, MR 0389953. · Zbl 0296.16001
[26] C. A.Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324. · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.