×

Isotropic compact stars admitting Heintzmann solution in Rastall gravity. (English) Zbl 07910092

Summary: This paper is devoted to observe the physical attributes of static spherically symmetric isotropic compact stellar candidates in the context of Rastall theory of gravity. In order to inspect the structural composition of compact objects, the Heintzmann ansatz is taken into account. The unknown parameters associated with Heintzmann ansatz are evaluated through matching conditions with derived values of radii and masses of some specific star models. The consistency of the adopted ansatz is analyzed via graphical interpretation of matter variables, equation of state parameter, mass components, energy constraints, causality condition, stellar equation and adiabatic index for several choices of Rastall parameter. It is observed that the stars under consideration manifest stable structures corresponding to Heintzmann ansatz in this framework. Moreover, it is shown that for vanishing Rastall coupling parameter, the standard outcomes of general relativity can be retrieved.

MSC:

83-XX Relativity and gravitational theory
53-XX Differential geometry
Full Text: DOI

References:

[1] Hossein, S. K. M.et al., Anisotropic compact stars with variable cosmological constant, Int. J. Mod. Phys. D21 (2012) 1250088. · Zbl 1263.83045
[2] Rahaman, F.et al., Strange stars in Krori-Barua spacetime, Eur. Phys. J. C72 (2012) 2071.
[3] Mak, M. K. and Harko, T., Isotropic stars in general relativity, Eur. Phys. J. C73 (2013) 2585.
[4] Kalam, M.et al., Central density dependent anisotropic compact stars, Eur. Phys. J. C73 (2013) 2409.
[5] Kalam, M.et al., Analytical model of strange star in the low-mass X-ray binary 4U 1820-30, Eur. Phys. J. C74 (2014) 2971.
[6] Maurya, S. K.et al., A new model for spherically symmetric anisotropic compact star, Eur. Phys. J. C76 (2016) 266.
[7] Bhar, P., A new hybrid star model in Krori-Barua spacetime, Astrophys. Space Sci.357 (2015) 46.
[8] Maurya, S. K.et al., A new model for spherically symmetric charged compact stars of embedding class 1, Eur. Phys. J. C77 (2017) 45.
[9] Bhar, P.et al., Modelling of anisotropic compact stars of embedding class one, Eur. Phys. J. A52 (2016) 312.
[10] Jasim, M. K.et al., Anisotropic strange stars in Tolman-Kuchowicz spacetime, Eur. Phys. J. C78 (2018) 603.
[11] Aziz, A.et al., Constraining values of bag constant for strange star candidates, Int. J. Mod. Phys. D28 (2019) 1941006. · Zbl 1425.85004
[12] Islam, R., Molla, S. and Kalam, M., Analytical model of strange star in Durgapal spacetime, Astrophys. Space Sci.364 (2019) 112.
[13] Sarkar, N.et al., Relativistic compact stars with dark matter density profile, Eur. Phys. J. C80 (2020) 255.
[14] Pandya, D. M.et al., Anisotropic compact star model satisfying Karmarkar conditions, Astrophys. Space Sci.365 (2020) 30.
[15] Errehymy, A. and Daoud, M., Studies an analytic model of a spherically symmetric compact object in Einsteinian gravity, Eur. Phys. J. C80 (2020) 258.
[16] Nashed, G. G. L. and Capozziello, S., Stable and self-consistent compact star models in teleparallel gravity, Eur. Phys. J. C80 (2020) 969.
[17] Roupasa, Z. and Nashed, G. G. L., Anisotropic neutron stars modelling: Constraints in Krori-Barua spacetime, Eur. Phys. J. C80 (2020) 905.
[18] Nashed, G. G. L., The key role of Lagrangian multiplier in mimetic gravitational theory in the frame of isotropic compact star, Nucl. Phys. B993 (2023) 116264. · Zbl 1529.85003
[19] Rastall, P., Generalization of the Einstein theory, Phys. Rev. D6 (1972) 3357. · Zbl 0959.83525
[20] Rastall, P., A theory of gravity, Can. J. Phys.54 (1976) 66. · Zbl 1043.83558
[21] Fabris, J. C.et al., Rastall cosmology, Int. J. Mod. Phys. Conf. Ser.18 (2012) 67.
[22] Fabris, J. C., Daouda, M. H. and Piattella, O. F., Note on the evolution of the gravitational potential in Rastall scalar field theories, Phys. Lett. B711 (2012) 232.
[23] Batista, C. E. M.et al., Rastall cosmology and the \(\operatorname{\Lambda}\) CDM model, Phys. Rev. D85 (2012) 084008.
[24] Campos, J. P.et al., Does Chaplygin gas have salvation?Eur. Phys. J. C73 (2013) 2357.
[25] Carames, T. R. P.et al., The Brans-Dicke-Rastall theory, Eur. Phys. J. C74 (2014) 3145.
[26] Moradpour, H., Thermodynamics of flat FLRW universe in Rastall theory, Phys. Lett. B757 (2016) 187. · Zbl 1360.83056
[27] Salako, I. G., Houndjo, M. J. S. and Jawad, A., Generalized Mattig’s relation in Brans-Dicke-Rastall gravity, Int. J. Mod. Phys. D25 (2016) 1650076. · Zbl 1344.83049
[28] Moradpour, H.et al., A generalization to the Rastall theory and cosmic eras, Eur. Phys. J. C77 (2017) 259.
[29] Saleem, R. and Hassan, J., Confronting the warm vector inflation in Rastall theory of gravity with Planck 2018 data, Phys. Dark Universe28 (2020) 100515.
[30] Afshar, B., Moradpour, H. and Shabani, H., Slow-roll inflation and reheating in Rastall theory, Phys. Dark Universe42 (2023) 101357.
[31] Nashed, G. G. L., Spherically symmetric charged black holes in \(f(R)\) gravitational theories, Eur. Phys. J. Plus133 (2018) 18.
[32] Nashed, G. G. L., El Hanafy, W. and Bamba, K., Charged rotating black holes coupled with nonlinear electrodynamics Maxwell field in the mimetic gravity, J. Cosmol. Astropart. Phys.01 (2019) 058. · Zbl 07486203
[33] Capozziello, S. and Nashed, G. G. L., Rotating and non-rotating AdS black holes in \(f(\mathcal{T})\) gravity non-linear electrodynamics, Eur. Phys. J. C79 (2019) 911.
[34] Nashed, G. G. L. and Nojiri, S., Nontrivial black hole solutions in \(f(R)\) gravitational theory, Phys. Rev. D102 (2020) 124022.
[35] Nashed, G. G. L. and Saridakis, E. N., New rotating black holes in non-linear Maxwell \(f(R)\) gravity, Phys. Rev. D102 (2020) 124072.
[36] Nashed, G. G. L., Uniqueness of non-trivial spherically symmetric black hole solution in special classes of \(F(R)\) gravitational theory, Phys. Lett. B812 (2021) 136012. · Zbl 1476.83099
[37] Heydarzade, Y. and Darabi, F., Black hole solutions surrounded by perfect fluid in Rastall theory, Phys. Lett. B771 (2017) 365. · Zbl 1372.83061
[38] Manna, T., Rahaman, F. and Mondal, M., Solar system tests in Rastall gravity, Phys. Lett. A35 (2020) 2050034. · Zbl 1434.83103
[39] Ma, M. S. and Zhao, R., Noncommutative geometry inspired black holes in Rastall gravity, Eur. Phys. J. C77 (2017) 629.
[40] Spallucci, E. and Smailagic, A., Gaussian black holes in Rastall gravity, Int. J. Mod. Phys. D27 (2018) 1850003. · Zbl 1430.83089
[41] Liang, J., Quasinormal modes of the Schwarzschild black hole surrounded by the quintessence field in Rastall gravity, Commun. Theor. Phys.70 (2018) 695. · Zbl 1452.83015
[42] Xu, Z.et al., Kerr-Newman-AdS black hole surrounded by perfect fluid matter in Rastall gravity, Eur. Phys. J. C78 (2018) 513.
[43] Lobo, I. P.et al., Thermodynamics of black holes in Rastall gravity, Int. J. Mod. Phys. D27 (2018) 1850069.
[44] Bamba, K.et al., Thermodynamics in Rastall gravity with entropy corrections, Eur. Phys. J. C78 (2018) 986.
[45] Lin, K. and Qian, W. L., Neutral regular black hole solution in generalized Rastall gravity, Chin. Phys. C43 (2019) 083106.
[46] Kumar, R. and Ghosh, S. G., Rotating black hole in Rastall theory, Eur. Phys. J. C78 (2018) 750.
[47] Kumar, R.et al., Shadows of black hole surrounded by anisotropic fluid in Rastall theory, Phys. Dark Universe34 (2021) 100881.
[48] Hansraj, S., Banerjee, A. and Channuie, P., Impact of the Rastall parameter on perfect fluid spheres, Ann. Phys.400 (2019) 320. · Zbl 1415.83043
[49] Hansraj, S. and Banerjee, A., Equilibrium stellar configurations in Rastall theory and astrophysical implications, Mod. Phys. Lett. A35 (2020) 2050105. · Zbl 1435.83126
[50] Abbas, G. and Shahzad, M. R., Isotropic compact stars model in Rastall theory admitting conformal motion, Astrophys. Space Sci.363 (2018) 251.
[51] Abbas, G. and Shahzad, M. R., A new model of quintessence compact stars in the Rastall theory of gravity, Eur. Phys. J. A54 (2018) 211.
[52] Abbas, G. and Shahzad, M. R., Models of anisotropic compact stars in the Rastall theory of gravity, Astrophys. Space Sci.364 (2019) 50.
[53] Abbas, G. and Shahzad, M. R., Strange stars with MIT bag model in the Rastall theory of gravity, Int. J. Geom. Methods Mod. Phys.9 (2019) 1950132. · Zbl 07804174
[54] Abbas, G. and Shahzad, M. R., Comparative analysis of Einstein gravity and Rastall gravity for the compact objects, Chin. J. Phys.63 (2020) 1. · Zbl 07829546
[55] Shahzad, M. R. and Abbas, G., Models of quintessence compact stars in Rastall gravity consistent with observational data, Eur. Phys. J. Plus135 (2020) 502.
[56] Bhar, P.et al., Study on anisotropic stars in the framework of Rastall gravity, Astrophys. Space Sci.365 (2020) 145.
[57] Moradpour, H., Sadeghnezhad, N. and Hendi, S. H., Traversable asymptotically flat wormholes in Rastall gravity, Can. J. Phys.95 (2017) 1257.
[58] Heintzmann, H., New exact static solutions of Einstein’s field equations, Z. Phys.228 (1969) 489.
[59] Estrada, M. and Tello-Ortiz, F., A new family of analytical anisotropic solutions by gravitational decoupling, Eur. Phys. J. Plus133 (2018) 453.
[60] Morales, E. and Tello-Ortiz, F., Charged anisotropic compact objects by gravitational decoupling, Eur. Phys. J. C78 (2018) 618.
[61] Kalam, M., Hossein, S. K. M. and Molla, S., Neutron stars: A relativistic study, Res. Astron. Astrophys.18 (2018) 025.
[62] Sharif, M. and Waseem, A., Role of curvature-matter coupling on anisotropic strange stars, Chin. J. Phys.63 (2020) 92. · Zbl 07829556
[63] Siddiqa, A.et al., Impact of minimal matter-geometry coupling on anisotropic quark stars, Int. J. Geom. Methods Mod. Phys.20 (2023) 2350068. · Zbl 1535.83114
[64] Bombaci, I., Observational evidence for strange matter in compact objects from the x-ray burster 4U 1820-30, Phys. Rev. C55 (1997) 1587.
[65] Dey, M.et al., Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential, Phys. Lett. B438 (1998) 123.
[66] Li, X. D.et al., Is SAX J1808.4-3658 a strange Star?Phys. Rev. Lett.83 (1999) 3776.
[67] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev.116 (1959) 1027. · Zbl 0092.20802
[68] Barraco, D. E. and Hamity, V. H., Maximum mass of a spherically symmetric isotropic star, Phys. Rev. D65 (2002) 124028.
[69] Herrera, L., Cracking of self-gravitating compact objects, Phys. Lett. A165 (1992) 206.
[70] Chandrasekhar, S., Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity, Astrophys. J.140 (1964) 417. · Zbl 0151.47102
[71] Heintzmann, H. and Hillebrandt, W., Neutron stars with an anisotropic equation of state-mass, redshift and stability, Astron. Astrophys.38 (1975) 51.
[72] W. Hillebrandt and K. O. Steinmetz, Anisotropic neutron star models — Stability against radial and nonradial pulsations, Astron. Astrophys.53 (1976) 283; I. Bombaci, The maximum mass of a neutron star, Astron. Astrophys.305 (1996) 871.
[73] Nashed, G. G. L., Isotropic compact stellar model in Rastall’s gravitational theory, Nucl. Phys. B994 (2023) 116305. · Zbl 1531.83134
[74] Saleem, R., Aslam, M. I. and Shahid, S., A study of compact stars within Rastall gravity, Int. J. Geom. Methods Mod. Phys.21 (2024) 2450106. · Zbl 07867023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.