×

\( \Gamma \)-conjugate weight enumerators and invariant theory. (English) Zbl 07780313

Summary: Let \(K\) be a field, \( \Gamma\) a finite group of field automorphisms of \(K\), \(F\) the \(\Gamma \)-fixed field in \(K\), and \(G\le{\mathrm{GL}}_v(K)\) a finite matrix group. Then the action of \(\Gamma\) defines a grading on the symmetric algebra of the \(F\)-space \(K^v\) which we use to introduce the notion of homogeneous \(\Gamma \)-conjugate invariants of \(G\). We apply this new grading in invariant theory to broaden the connection between codes and invariant theory by introducing \(\Gamma \)-conjugate complete weight enumerators of codes. The main result of this paper applies the theory from Nebe, Rains, Sloane to show that under certain extra conditions these new weight enumerators generate the ring of \(\Gamma \)-conjugate invariants of the associated Clifford-Weil groups. As an immediate consequence, we obtain a result by Bannai et al. that the complex conjugate weight enumerators generate the ring of complex conjugate invariants of the complex Clifford group. Also the Schur-Weyl duality conjectured and partly shown by Gross et al. can be derived from our main result.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
94B60 Other types of codes
11S20 Galois theory

References:

[1] Bannai, Ei; Oura, M.; Zhao, Da, The complex conjugate invariants of the Clifford groups, Designs Codes Cryptography, 89, 341-350 (2021) · Zbl 1458.15040 · doi:10.1007/s10623-020-00819-7
[2] Benson, D.J.: Polynomial Invariants of Finite Groups. London Mathematical Society Lecture Note Series, 190. Cambridge University Press, Cambridge (1993) · Zbl 0864.13001
[3] Forger, M., Invariant polynomials and Molien functions, J. Math. Phys., 39, 1107-1141 (1998) · Zbl 0909.22021 · doi:10.1063/1.532373
[4] Gross, D.; Nezami, S.; Walter, M., Schur-Weyl duality for the Clifford group with applications: property testing, a robust Hudson theorem, and de Finetti representations, Comm. Math. Phys., 385, 1325-1393 (2021) · Zbl 1468.81021 · doi:10.1007/s00220-021-04118-7
[5] Kneser, M., Klassenzahlen definiter quadratischer Formen, Arch. Math. (Basel), 8, 241-250 (1957) · Zbl 0078.03801 · doi:10.1007/BF01898782
[6] Kueng, R.; Rauhut, H.; Terstiege, U., Low rank matrix recovery from rank one measurements, Appl. Comput. Harmonic Anal., 42, 88-116 (2017) · Zbl 1393.94310 · doi:10.1016/j.acha.2015.07.007
[7] Nebe, G., Kneser-Hecke-operators in coding theory, Abh. Math. Sem. Univ. Hamburg, 76, 79-90 (2006) · Zbl 1122.94053 · doi:10.1007/BF02960857
[8] Nebe, G.; Quebbemann, HG; Rains, EM; Sloane, NJA, Complete weight enumerators of generalized doubly even self-dual codes, Finite Fields Appl., 10, 540-550 (2004) · Zbl 1107.94013 · doi:10.1016/j.ffa.2003.12.001
[9] Nebe, G., Rains, E.M., Sloane, N.J.A.: Self-dual Codes and Invariant Theory. Algorithms and Computation in Mathematics, 17. Springer, Berlin (2006) · Zbl 1173.94447
[10] Voight, J.: Kneser’s method of neighbors. Arch. Math. (Basel) 121 (2023) · Zbl 1537.11101
[11] Zhu, H., Kueng, R., Grassl, M., Gross, D.: The Clifford group fails gracefully to be a unitary 4-design. arXiv:1609.08172 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.