×

Random attractors of a stochastic Hopfield neural network model with delays. (English) Zbl 07881037

Summary: The global asymptotic behavior of a stochastic Hopfield neural network model (HNNM) with delays is explored by studying the existence and structure of random attractors. It is firstly proved that the trajectory field of the stochastic delayed HNNM admits an almost sure continuous version, which is compact for \(t > \tau\) (where \(\tau\) is the delay) by a construction based on the random semiflow generated by the diffusion term due to Mohammed (Stoch. Stoch. Rep. 29: 89-131, 1990). Then, this version is shown to generate a random dynamical system (RDS) by a Wong-Zakai approximation, after which the existence of a random absorbing set is obtained via uniform apriori estimate of the solutions. Subsequently, the pullback asymptotic compactness of the RDS generated by the stochastic delayed HNNM is established and hence the existence of random attractors is obtained. Sufficient conditions under which the attractors turn out to be an exponential attracting stationary solution are also given. Finally, some numerical simulations illustrate the results.

MSC:

34K50 Stochastic functional-differential equations
34K25 Asymptotic theory of functional-differential equations
37H05 General theory of random and stochastic dynamical systems
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
92B20 Neural networks for/in biological studies, artificial life and related topics

References:

[1] Arnold, L.: Random Dynamical System. Springer Science & Business Media, (1998) · Zbl 0906.34001
[2] Bharucha-Reid, AT, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 269, 8597-8639, 1976
[3] Bessaih, H.; Garrido-Atienza, MJ; Schmalfuss, B., Pathwise solutions and attractors for retarded SPDES with time smooth diffusion coefficients, Disc. Contin. Dyn. Syst., 34, 1, 3945-3968, 2014 · Zbl 1318.37029
[4] Caraballo, T.; Real, J., Attractors for 2D-Navier-Stokes models with delays, J. Diff. Equat., 205, 270-296, 2004 · Zbl 1068.35088 · doi:10.1016/j.jde.2004.04.012
[5] Chen, Zhang; Lin, Wei; Yang, Dandan; Zuo, Xiaodong, Random attractors and invariant measures for 3D stochastic globally modified Navier-Stokes equations with time-dependent delay and coefficient, Discr. Cont. Dyn. Syst.- S, 16, 10, 2721-2748, 2023 · Zbl 1531.37069 · doi:10.3934/dcdss.2023002
[6] Chen, Z.; Yang, D.; Zhong, S., Hopfield neural networks with delays driven by colored noise, IEEE Trans. Neural Netw. Learn. Syst., 34, 8, 4308-4320, 2021 · doi:10.1109/TNNLS.2021.3117040
[7] Chua, LO; Yang, L., Cellular neural networks: applications, IEEE Trans. Circuits Syst., 35, 10, 1273-1290, 1988 · doi:10.1109/31.7601
[8] Crauel, H., Random point attractors versus random set attractor, J. London Math. Soc., 63, 1, 413-427, 2002 · Zbl 1011.37032
[9] Crauel, H.; Flandoli, F., Attractors for random dynamical systems, Probab. Theory Relat Fields, 100, 1, 365-393, 1994 · Zbl 0819.58023 · doi:10.1007/BF01193705
[10] Crauel, H.; Kloeden, PE, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117, 173-206, 2015 · Zbl 1358.37041 · doi:10.1365/s13291-015-0115-0
[11] Caraballo, T.; Kloeden, PE; Schmalfuss, B., Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50, 183-207, 2004 · Zbl 1066.60058 · doi:10.1007/s00245-004-0802-1
[12] Duan, J.; Lu, K.; Schmalfuss, B., Invariant manifolds for stochastic partial differential equations, Ann Probab, 31, 2109-2135, 2003 · Zbl 1052.60048 · doi:10.1214/aop/1068646380
[13] Flandoli, F.; Schmalfuss, B., Random attractors for the 3d stochastic Navier-Stokes equation with multiplicative white noise, Stoch. Stoch. Proc., 59, 1, 21-45, 1996 · Zbl 0870.60057 · doi:10.1080/17442509608834083
[14] Gopalsamy, K.; He, XZ, Stability in asymmetric Hopfield nets with transmission delays, Phys. D-Nonlinear Phenom., 76, 4, 344-358, 1994 · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[15] Guo, S.; Li, S., Invariant measure and random attractors for stochastic differential equations with delay, Qual. Theory Dyn. Syst., 21, 1-38, 2022 · Zbl 1484.60067 · doi:10.1007/s12346-022-00569-y
[16] Hale, J., Asymptotic Behavior of Dissipative Systems, 1988, Providence: American Mathematical Society, Providence · Zbl 0642.58013
[17] Han, X.; Kloeden, PE; Usman, B., Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18, 809-824, 2019 · Zbl 1404.37093 · doi:10.3934/cpaa.2019039
[18] Haykin, S., Neural Networks, 1994, New Jersey: Prentice-Hall, New Jersey · Zbl 0828.68103
[19] Hopfield, JJ; Tank, DW, Computing with neural circuits: a model, Science, 233, 4764, 625-633, 1986 · doi:10.1126/science.3755256
[20] Hopfield, JJ, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nat. Acad. Sci., 81, 10, 3088-3092, 1984 · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088
[21] Hu, W.; Zhu, Q., Spatial-temporal dynamics of a non-monotone reaction-diffusion Hopfield’s neural network model with delays, Neural Comput. Appl., 34, 11199-11212, 2022 · doi:10.1007/s00521-022-07036-4
[22] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North Holland-Kodansha-Amsterdam-Tokyo, (1981) · Zbl 0495.60005
[23] Twardowsky, K., An extension of the Wong-Zakai theorem for stochastic evolution equations in Hilbert spaces, Stoch. Anal. Appl., 10, 471-500, 1992 · Zbl 0754.60060 · doi:10.1080/07362999208809284
[24] Kloeden, PE; Lorenz, T., Mean-square random dynamical systems, J. Differ. Equ., 253, 1422-1438, 2012 · Zbl 1267.37018 · doi:10.1016/j.jde.2012.05.016
[25] Kloeden, P.E., Yang, M.: An Introduction to Nonautonomous Dynamical Systems and their Attractors. World Scientific Publishing Co. Pte. Ltd., (2021) · Zbl 1453.37001
[26] Li, X.; Ding, D., Mean square exponential stability of stochastic Hopfield neural networks with mixed delays, Stat. Prob. Lett., 126, 88-96, 2017 · Zbl 1378.92005 · doi:10.1016/j.spl.2017.02.029
[27] Li, Y.; Yang, Y.; Wu, L., Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic delay, IEEE Trans. Neural Netw., 19, 1299-1306, 2008 · doi:10.1109/TNN.2008.2000166
[28] Liz, E.; Ruiz-Herrera, A., Attractivity, multistability, and bifurcation in delayed Hopfield’s model with non-monotonic feedback, J. Differ. Equ., 255, 11, 4244-4266, 2013 · Zbl 1291.34121 · doi:10.1016/j.jde.2013.08.007
[29] Marcus, C.; Westervelt, R., Stability of analog neural networks with delay, Phys. Rev. A, 39, 1, 347, 1989 · doi:10.1103/PhysRevA.39.347
[30] Mohammed, S-EA, Stochastic Functional Differential Equations, 1984, Boston London-Melbourne: Pitman Advanced Publishing Program, Boston London-Melbourne · Zbl 0584.60066
[31] Mohammed, S-EA, The Lyapunov spectrum and stable manifolds for stochastic linear delay equations, Stoch. Stoch. Rep., 29, 89-131, 1990 · Zbl 0699.60045 · doi:10.1080/17442509008833609
[32] Mohammed, S-EA; Scheutzow, M., The stable manifold theorem for non-linear stochastic systems with memory. I: existence of the semiflow, J. Funct. Anal., 205, 271-305, 2003 · Zbl 1039.60060 · doi:10.1016/j.jfa.2002.04.001
[33] Mohammed, S-EA; Scheutzow, M., The stable manifold theorem for non-linear stochastic systems with memory. II: the local stable manifold theorem, J. Funct. Anal., 206, 253-306, 2004 · Zbl 1053.60061 · doi:10.1016/j.jfa.2003.06.002
[34] Morita, M., Associative memory with nonmonotone dynamics, Neural Netw., 6, 1, 115-126, 1993 · doi:10.1016/S0893-6080(05)80076-0
[35] Park, H.; Kim, S., “Hardware accelerator systems for artificial intelligence and machine learning”, in Advances in Computers Editor(s): Shiho Kim, Ganesh Chandra Deka, 122, 51-95, 2021
[36] Sui, M.; Wang, Y.; Han, X.; Kloeden, PE, Random recurrent neural networks with delays, J. Differ. Equ., 269, 8597-8639, 2020 · Zbl 1453.34105 · doi:10.1016/j.jde.2020.06.008
[37] Sun, Y.; Cao, J., p-th moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear Anal. RWA, 9, 1171-1185, 2007 · Zbl 1196.60125 · doi:10.1016/j.nonrwa.2006.06.009
[38] Tank, DW; Hopfield, J., Neural computation by concentrating information in time, Proc. Nat. Acad. Sci., 84, 7, 1896-1900, 1987 · doi:10.1073/pnas.84.7.1896
[39] van den Driessche, P.; Zou, X., Global attractivity in delayed Hopfield neural network models, SIAM J. Appl. Math, 58, 6, 1878-1890, 1998 · Zbl 0917.34036 · doi:10.1137/S0036139997321219
[40] Varzaneh Ghani, M.; Riedel, S.; Scheutzow, M., A dynamical theory for singular stochastic delay differential equations I Linear equations and a multiplicative ergodic theorem on fields of Banach spaces”, SIAM J. Appl. Dyn. Syst., 21, 542-587, 2022 · Zbl 1490.34103 · doi:10.1137/21M1433435
[41] Wan, L.; Sun, J., Mean square exponential stability of stochastic delayed Hopfield neural networks, Phys. Lett. A, 344, 306-318, 2005 · Zbl 1194.37186 · doi:10.1016/j.physleta.2005.06.024
[42] Wang, X.; Kloeden, PE; Han, X., Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nonlinear Differ. Equ. Appl., 28, 43, 2021 · Zbl 1476.34050 · doi:10.1007/s00030-021-00705-8
[43] Wu, F.; Kloeden, P., Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B, 18, 1715-1734, 2013 · Zbl 1316.34083
[44] Wu, Y.; Chen, Y., Mean square exponential stability of uncertain stochastic neural networks with time-varying delay, Neurocomputing, 72, 2379-2384, 2009 · doi:10.1016/j.neucom.2008.12.001
[45] Wu, Y.; Chen, Y., A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays, IEEE Trans. Syst. Man Cybernet. Part B, 41, 1275-1286, 2011 · doi:10.1109/TSMCB.2011.2125950
[46] Yan, W.; Li, Y.; Ji, S., Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51, 2003 · Zbl 1309.37076 · doi:10.1063/1.3319566
[47] Yang, D.; Chen, Z.; Tomás, C., Dynamics of a globally modified Navier-Stokes model with double delay, Z. Angew. Math. Phys., 73, 206, 2022 · Zbl 1498.35448 · doi:10.1007/s00033-022-01850-5
[48] Yang, L.; Wang, Y.; Kloeden, PE, Pullback exponential attractors for non-autonomous recurrent neural networks with discrete and distributed time-varying delays, J. Dyn. Differ. Equ., 35, 303-327, 2023 · Zbl 1527.37088 · doi:10.1007/s10884-021-09991-3
[49] Yoshizawa, M.; Amari, S., Capacity of associative memory using a nonmonotonic neuron model, Neural Netw., 6, 2, 167-176, 1993 · doi:10.1016/0893-6080(93)90014-N
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.