×

Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity. (English) Zbl 07906042

Summary: In this paper, a compressible viscous-dispersive Euler system in one space dimension in the context of quantum hydrodynamics is considered. The purpose of this study is twofold. First, it is shown that the system is locally well-posed. For that purpose, the existence of classical solutions which are perturbation of constant states is established. Second, it is proved that in the particular case of subsonic equilibrium states, sufficiently small perturbations decay globally in time. In order to prove this stability property, the linearized system around the subsonic state is examined. Using an appropriately constructed compensating matrix symbol in the Fourier space, it is proved that solutions to the linear system decay globally in time, underlying a dissipative mechanism of regularity gain type. These linear decay estimates, together with the local existence result, imply the global existence and the decay of perturbations to constant subsonic equilibrium states as solutions to the full nonlinear system.
©2024 American Institute of Physics

MSC:

76Y05 Quantum hydrodynamics and relativistic hydrodynamics
35Q35 PDEs in connection with fluid mechanics
35Q40 PDEs in connection with quantum mechanics
76L05 Shock waves and blast waves in fluid mechanics
35Q30 Navier-Stokes equations

References:

[1] Antonelli, P.; Cianfarani Carnevale, G.; Lattanzio, C.; Spirito, S., Relaxation limit from the quantum Navier-Stokes equations to the quantum drift-diffusion equation, J. Nonlinear Sci., 31, 5, 71, 2021 · Zbl 1479.35598 · doi:10.1007/s00332-021-09728-y
[2] Antonelli, P.; Marcati, P., On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287, 2, 657-686, 2009 · Zbl 1177.82127 · doi:10.1007/s00220-008-0632-0
[3] Antonelli, P.; Marcati, P., The quantum hydrodynamics system in two space dimensions, Arch. Ration. Mech. Anal., 203, 2, 499-527, 2012 · Zbl 1290.76165 · doi:10.1007/s00205-011-0454-7
[4] Antonelli, P.; Marcati, P.; Sequeira, A.; Solonnikov, V. A., Some results on systems for quantum fluids, Recent Advances in Partial Differential Equations and Applications, 666, 41-54, 2016, Contemporary Mathematics, American Mathematical Society: Contemporary Mathematics, American Mathematical Society, Providence, RI · Zbl 1353.35230
[5] Antonelli, P.; Marcati, P.; Zheng, H., Genuine hydrodynamic analysis to the 1-D QHD system: Existence, dispersion and stability, Commun. Math. Phys., 383, 3, 2113-2161, 2021 · Zbl 1467.35253 · doi:10.1007/s00220-021-03998-z
[6] Bohm, D., A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I, Phys. Rev., 85, 2, 166-179, 1952 · Zbl 0046.21004 · doi:10.1103/physrev.85.166
[7] Bohm, D., A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II, Phys. Rev., 85, 2, 180-193, 1952 · Zbl 0046.21004 · doi:10.1103/physrev.85.180
[8] Bohm, D.; Hiley, B. J.; Kaloyerou, P. N., An ontological basis for the quantum theory, Phys. Rep., 144, 6, 321-375, 1987 · doi:10.1016/0370-1573(87)90024-x
[9] Brull, S.; Méhats, F., Derivation of viscous correction terms for the isothermal quantum Euler model, ZAMM - Z. Angew. Math. Mech., 90, 3, 219-230, 2010 · Zbl 1355.82018 · doi:10.1002/zamm.200900297
[10] Dalfovo, F.; Giorgini, S.; Pitaevskii, L. P.; Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463-512, 1999 · doi:10.1103/revmodphys.71.463
[11] Diaw, A.; Murillo, M. S., A viscous quantum hydrodynamics model based on dynamic density functional theory, Sci. Rep., 7, 15352, 2017 · doi:10.1038/s41598-017-14414-9
[12] Engel, K.-J.; Nagel, R., A Short Course on Operator Semigroups. Universitext, 2006, Springer-Verlag: Springer-Verlag, New York · Zbl 1106.47001
[13] Ferry, D. K.; Zhou, J.-R., Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling, Phys. Rev. B, 48, 7944-7950, 1993 · doi:10.1103/physrevb.48.7944
[14] Folino, R.; Plaza, R. G.; Zhelyazov, D., Spectral stability of small-amplitude dispersive shocks in quantum hydrodynamics with viscosity, Commun. Pure Appl. Anal., 21, 12, 4019-4040, 2022 · Zbl 1513.76181 · doi:10.3934/cpaa.2022133
[15] Folino, R.; Plaza, R. G.; Zhelyazov, D., Spectral stability of weak dispersive shock profiles for quantum hydrodynamics with nonlinear viscosity, J. Differ. Equations, 359, 330-364, 2023 · Zbl 1514.76133 · doi:10.1016/j.jde.2023.02.038
[16] Folland, G. B., Introduction to Partial Differential Equations, 1995, Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 0841.35001
[17] Friedrichs, K. O., Symmetric hyperbolic linear differential equations, Commun. Pure Appl. Math., 7, 345-392, 1954 · Zbl 0059.08902 · doi:10.1002/cpa.3160070206
[18] Friedrichs, K. O.; Lax, P. D., On symmetrizable differential operators, Singular Integrals. Proceedings of the symposium in pure mathematics, Chicago, IL, 1966, 128-137, 1967, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0184.36603
[19] Gamba, I. M.; Jüngel, A.; Vasseur, A., Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations, J. Differ. Equations, 247, 11, 3117-3135, 2009 · Zbl 1181.35209 · doi:10.1016/j.jde.2009.09.001
[20] Gardner, C. L., The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54, 2, 409-427, 1994 · Zbl 0815.35111 · doi:10.1137/s0036139992240425
[21] Gasser, I., Traveling wave solutions for a quantum hydrodynamic model, Appl. Math. Lett., 14, 3, 279-283, 2001 · Zbl 0978.82103 · doi:10.1016/s0893-9659(00)00149-x
[22] Gasser, I.; Markowich, P. A., Quantum hydrodynamics, Wigner transforms, the classical limit, Asymptotic Anal., 14, 2, 97-116, 1997 · Zbl 0877.76087 · doi:10.3233/asy-1997-14201
[23] Godunov, S. K., An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, 139, 521-523, 1961 · Zbl 0125.06002
[24] Grant, J., Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations, J. Phys. A: Math., Nucl. Gen., 6, 11, L151-L153, 1973 · Zbl 0268.76005 · doi:10.1088/0305-4470/6/11/001
[25] Graziani, F.; Moldabekov, Z.; Olson, B.; Bonitz, M., Shock physics in warm dense matter: A quantum hydrodynamics perspective, Contrib. Plasma Phys., 62, 2, e202100170, 2022 · doi:10.1002/ctpp.202100170
[26] Gurevich, A. V.; Pitayevskiĭ, L. P., Nonstationary structure of a collisionless shock wave, Sov. Phys. JETP, 38, 2, 590-604, 1974
[27] Hattori, H.; Li, D. N., Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25, 1, 85-98, 1994 · Zbl 0817.35076 · doi:10.1137/s003614109223413x
[28] Hattori, H.; Li, D. N., Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198, 1, 84-97, 1996 · Zbl 0858.35124 · doi:10.1006/jmaa.1996.0069
[29] Hoefer, M. A.; Ablowitz, M. J., Interactions of dispersive shock waves, Physica D, 236, 1, 44-64, 2007 · Zbl 1131.35077 · doi:10.1016/j.physd.2007.07.017
[30] Hoefer, M. A.; Ablowitz, M. J.; Coddington, I.; Cornell, E. A.; Engels, P.; Schweikhard, V., Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics, Phys. Rev. A, 74, 2, 023623, 2006 · doi:10.1103/physreva.74.023623
[31] Humpherys, J., Admissibility of viscous-dispersive systems, J. Hyperbolic Differ. Equations, 02, 4, 963-974, 2005 · Zbl 1090.35119 · doi:10.1142/s0219891605000671
[32] Jüngel, A.; Mariani, M. C.; Rial, D., Local existence of solutions to the transient quantum hydrodynamic equations, Math. Models Methods Appl. Sci., 12, 4, 485-495, 2002 · Zbl 1215.81031 · doi:10.1142/s0218202502001751
[33] Jüngel, A.; Milišić, J. P., Physical and numerical viscosity for quantum hydrodynamics, Commun. Math. Sci., 5, 2, 447-471, 2007 · Zbl 1130.76088 · doi:10.4310/cms.2007.v5.n2.a11
[34] Kawashima, S., Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, 1983, Kyoto University
[35] Kawashima, S.; Shibata, Y.; Xu, J., Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion, Commun. Partial Differ. Equations, 47, 2, 378-400, 2022 · Zbl 1484.35157 · doi:10.1080/03605302.2021.1983596
[36] Kawashima, S.; Shizuta, Y., On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J., 40, 3, 449-464, 1988 · Zbl 0699.35171 · doi:10.2748/tmj/1178227986
[37] Khalatnikov, I. M., An Introduction to the Theory of Superfluidity. Advanced Book Classics, 1989, Addison-Wesley Publishing Company, Advanced Book Program: Addison-Wesley Publishing Company, Advanced Book Program, Redwood city, CA
[38] Kotschote, M., Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. Henri Poincare C, 25, 4, 679-696, 2008 · Zbl 1141.76053 · doi:10.1016/j.anihpc.2007.03.005
[39] Landau, L. D., Theory of the superfluidity of helium II, Phys. Rev., 60, 356-358, 1941 · Zbl 0027.18505 · doi:10.1103/physrev.60.356
[40] Lattanzio, C.; Marcati, P.; Zhelyazov, D., Dispersive shocks in quantum hydrodynamics with viscosity, Physica D, 402, 132222, 2020 · Zbl 1453.76233 · doi:10.1016/j.physd.2019.132222
[41] Lattanzio, C.; Marcati, P.; Zhelyazov, D., Numerical investigations of dispersive shocks and spectral analysis for linearized quantum hydrodynamics, Appl. Math. Comput., 385, 125450, 2020 · Zbl 1465.76117 · doi:10.1016/j.amc.2020.125450
[42] Lattanzio, C.; Zhelyazov, D., Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity, Math. Models Methods Appl. Sci., 31, 9, 1719-1747, 2021 · Zbl 1480.76167 · doi:10.1142/s0218202521500378
[43] Lattanzio, C.; Zhelyazov, D., Traveling waves for quantum hydrodynamics with nonlinear viscosity, J. Math. Anal. Appl., 493, 1, 124503, 2021 · Zbl 1454.76112 · doi:10.1016/j.jmaa.2020.124503
[44] Madelung, E., Quantentheorie in hydrodynamischer form, Z. Phys., 40, 322-326, 1927 · JFM 52.0969.06 · doi:10.1007/bf01400372
[45] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13, 115-162, 1959 · Zbl 0088.07601
[46] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44, 1983, Springer-Verlag: Springer-Verlag, New York · Zbl 0516.47023
[47] Plaza, R. G.; Valdovinos, J. M., Dissipative structure of one-dimensional isothermal compressible fluids of Korteweg type, J. Math. Anal. Appl., 514, 2, 126336, 2022 · Zbl 1504.35454 · doi:10.1016/j.jmaa.2022.126336
[48] Plaza, R. G.; Valdovinos, J. M., Global decay of perturbations of equilibrium states for one-dimensional heat conducting compressible fluids of Korteweg type, 2023
[49] Ra, S.; Hong, H., The existence, uniqueness and exponential decay of global solutions in the full quantum hydrodynamic equations for semiconductors, Z. Angew. Math. Phys., 72, 3, 107, 2021 · Zbl 1467.76078 · doi:10.1007/s00033-021-01540-8
[50] Sagdeev, S. R. Z.; Leontovich, M. A., Kollektivnye protsessy i udarnye volny v razrezhennol plazme (Collective processes and shock waves in a tenuous plasma), Voprosy Teorii Plazmy (Problems of Plasma Theory), 5, 1964, Atomizdat: Atomizdat, Moscow
[51] Shizuta, Y.; Kawashima, S., Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14, 2, 249-275, 1985 · Zbl 0587.35046 · doi:10.14492/hokmj/1381757663
[52] Tong, L.; Xia, Y., Global existence and the algebraic decay rate of the solution for the quantum Navier-Stokes-Poisson equations in \(\mathbb{R}^3\), J. Math. Phys., 63, 9, 091511, 2022 · Zbl 1509.35245 · doi:10.1063/5.0082375
[53] Ueda, Y.; Duan, R.; Kawashima, S., Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application, Arch. Ration. Mech. Anal., 205, 1, 239-266, 2012 · Zbl 1273.35051 · doi:10.1007/s00205-012-0508-5
[54] Ueda, Y.; Duan, R.; Kawashima, S., New structural conditions on decay property with regularity-loss for symmetric hyperbolic systems with non-symmetric relaxation, J. Hyperbolic Differ. Equations, 15, 1, 149-174, 2018 · Zbl 1407.35029 · doi:10.1142/s0219891618500066
[55] Vol’pert, A. I.; Hudjaev, S. I., The Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sb., 16, 4, 517-544, 1972 · Zbl 0251.35064 · doi:10.1070/sm1972v016n04abeh001438
[56] Yang, J.; Ju, Q.; Yang, Y.-F., Asymptotic limits of Navier-Stokes equations with quantum effects, Z. Angew. Math. Phys., 66, 5, 2271-2283, 2015 · Zbl 1327.35304 · doi:10.1007/s00033-015-0554-6
[57] Yang, J.; Peng, G.; Hao, H.; Que, F., Existence of global weak solution for quantum Navier-Stokes system, Int. J. Math., 31, 5, 2050038, 2020 · Zbl 1440.35248 · doi:10.1142/s0129167x2050038x
[58] Zhelyazov, D., Existence of standing and traveling waves in quantum hydrodynamics with viscosity, Z. Anal. Anwend., 42, 1-2, 65-89, 2023 · Zbl 1527.35313 · doi:10.4171/zaa/1723
[59] Zhelyazov, D., Numerical spectral analysis of standing waves in quantum hydrodynamics with viscosity, Math. Eng., 6, 3, 407-424, 2024 · doi:10.3934/mine.2024017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.