×

Solving linear Bayesian inverse problems using a fractional total variation-Gaussian (FTG) prior and transport map. (English) Zbl 07800942

Summary: The Bayesian inference is widely used in many scientific and engineering problems, especially in the linear inverse problems in infinite-dimensional setting where the unknowns are functions. In such problems, choosing an appropriate prior distribution is an important task. Especially when the function to infer has much detail information, such as many sharp jumps, corners, and the discontinuous and nonsmooth oscillation, the so-called total variation-Gaussian (TG) prior is proposed in function space to address it. However, the TG prior is easy to lead the blocky (staircase) effect in numerical results. In this work, we present a fractional order-TG (FTG) hybrid prior to deal with such problems, where the fractional order total variation (FTV) term is used to capture the detail information of the unknowns and simultaneously uses the Gaussian measure to ensure that it results in a well-defined posterior measure. For the numerical implementations of linear inverse problems in function spaces, we also propose an efficient independence sampler based on a transport map, which uses a proposal distribution derived from a diagonal map, and the acceptance probability associated to the proposal is independent of discretization dimensionality. And in order to take full advantage of the transport map, the hierarchical Bayesian framework is applied to flexibly determine the regularization parameter. Finally we provide some numerical examples to demonstrate the performance of the FTG prior and the efficiency and robustness of the proposed independence sampler method.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

BayesDA

References:

[1] Adams, R., Sobolev Spaces (1975), New York: Academic Press, New York · Zbl 0314.46030
[2] Babacan, S.; Molina, R.; Katsaggelos, A., Variational bayesian blind deconvolution using a total variation prior, IEEE Trans Image Process, 18, 1, 12-26 (2008) · Zbl 1371.94479 · doi:10.1109/TIP.2008.2007354
[3] Bonnotte, N., From knothe’s rearrangement to brenier’s optimal transport map, SIAM J Math Anal, 45, 64-87 (2013) · Zbl 1263.49059 · doi:10.1137/120874850
[4] Byrd, R.; Gilbert, J.; Nocedal, J., A trust region method based on interior point techniques for nonlinear programming, Math Program, 89, 149-185 (2000) · Zbl 1033.90152 · doi:10.1007/PL00011391
[5] Carlier, G.; Galichon, A.; Santambrogio, F., From knothe’s transport to brenier’s map and a continuation method for optimal transport, SIAM J Math Anal, 41, 6, 2554-2576 (2010) · Zbl 1203.49063 · doi:10.1137/080740647
[6] Cotter S, Roberts G, Stuart A, White D (2013) MCMC methods for functions: Modifying old algorithms to make them faster, Stati Sci 28(3) · Zbl 1331.62132
[7] Cui, T.; Law, K.; Marzouk, Y., Dimension-independent likelihood-informed mcmc, J Comput Phys, 304, 109-137 (2016) · Zbl 1349.65009 · doi:10.1016/j.jcp.2015.10.008
[8] Dashti, M.; Law, K.; Stuart, A.; Voss, J., MAP estimators and their consistency in bayesian nonparametric inverse problems, Inverse Prob, 29, 9 (2013) · Zbl 1281.62089 · doi:10.1088/0266-5611/29/9/095017
[9] Dashti M, Stuart A (2015) The bayesian approach to inverse problems, In: Handbook of Uncertainty Quantification, Springer International Publishing p 1-118
[10] Feng, Z.; Li, J., An adaptive independence sampler mcmc algorithm for bayesian inferences of functions, SIAM J Sci Comput, 40, 3, A1301-A1321 (2018) · Zbl 06870013 · doi:10.1137/15M1021751
[11] Gamerman D, Lopes H (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference, CRC Press · Zbl 1137.62011
[12] Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013) Bayesian data analysis, Chapman and Hall/CRC · Zbl 1279.62004
[13] Jin, B.; Zou, J., Hierarchical bayesian inference for ill-posed problems via variational method, J Comput Phys, 229, 19, 7317-7343 (2010) · Zbl 1198.65189 · doi:10.1016/j.jcp.2010.06.016
[14] Johansson, B.; Lesnic, D., A variational method for identifying a spacewise-dependent heat source, IMA J Appl Math, 72, 6, 748-760 (2007) · Zbl 1135.65034 · doi:10.1093/imamat/hxm024
[15] Johansson, T.; Lesnic, D., Determination of a spacewise dependent heat source, J Comput Appl Math, 209, 1, 66-80 (2007) · Zbl 1135.35097 · doi:10.1016/j.cam.2006.10.026
[16] Kaipio J, Somersalo E (2005) Statistical and computational inverse problems, Springer-Verlag · Zbl 1068.65022
[17] Kass, R.; Carlin, B.; Gelman, A.; Neal, R., Markov chain montecarlo in practice: a roundtable discussion, Am Stat, 52, 2, 93-100 (1998)
[18] Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations, Elsevier · Zbl 1092.45003
[19] Kleywegt, A.; Shapiro, A.; Mello, T., The sample average approximation method for stochastic discrete optimization, SIAM J Optim, 12, 2, 479-502 (2002) · Zbl 0991.90090 · doi:10.1137/S1052623499363220
[20] Lassas, M.; Siltanen, S., Can one use total variation prior for edge-preserving bayesian inversion?, Inverse Prob, 20, 5, 1537 (2004) · Zbl 1062.62260 · doi:10.1088/0266-5611/20/5/013
[21] Li, L.; Jafarpour, B., Effective solution of nonlinear subsurface flow inverse problems in sparse bases, Inverse Prob, 26, 10 (2010) · Zbl 1200.86009 · doi:10.1088/0266-5611/26/10/105016
[22] Martin, J.; Wilcox, L.; Burstedde, C.; Ghattas, O., A stochastic newton mcmc method for large-scale statistical inverse problems with application to seismic inversion, SIAM J Sci Comput, 34, 3, A1460-A1487 (2012) · Zbl 1250.65011 · doi:10.1137/110845598
[23] Marzouk Y, Moselhy T, Parno M, Spantini A (2016) Sampling via measure transport: an introduction, In: Handbook of Uncertainty Quantification, Springer International Publishing p 1-41
[24] Moselhy, T.; Marzouk, Y., Bayesian inference with optimal maps, J Comput Phys, 231, 23, 7815-7850 (2012) · Zbl 1318.62087 · doi:10.1016/j.jcp.2012.07.022
[25] Mueller, J.; Siltanen, S., Linear and nonlinear inverse problems with practical applications (2012), Philadelphia, PA: Society for Industrial and Applied Mathematics, Philadelphia, PA · Zbl 1262.65124 · doi:10.1137/1.9781611972344
[26] Parno, M.; Marzouk, Y., Transport map accelerated markov chain monte carlo, SIAM/ASA J Uncertain Quantif, 6, 2, 645-682 (2018) · Zbl 1394.65004 · doi:10.1137/17M1134640
[27] Peherstorfer, B.; Marzouk, Y., A transport-based multifidelity preconditioner for markov chain monte carlo, Adv Comput Math, 45, 5-6, 2321-2348 (2019) · Zbl 07179095 · doi:10.1007/s10444-019-09711-y
[28] Radon, J., On the determination of functions from their integral values along certain manifolds, IEEE Trans Med Imaging, 5, 4, 170-176 (1986) · doi:10.1109/TMI.1986.4307775
[29] Robert C, Casella G, Casella G (2004) Monte Carlo statistical methods, vol. 2, Springer · Zbl 1096.62003
[30] Roberts, G.; Rosenthal, J., Optimal scaling for various metropolis-hastings algorithms, Stat Sci, 4, 351-67 (2001) · Zbl 1127.65305
[31] Rosenblatt, M., Remarks on a multivariate transformation, Ann Math Stat, 23, 470-472 (1952) · Zbl 0047.13104 · doi:10.1214/aoms/1177729394
[32] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys D, 60, 1, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[33] Samko S, Kilbas A, Marichev O (1993) Fractional integrals and derivatives: theory and applications, CRC Press · Zbl 0818.26003
[34] Stuart, A., Inverse problems: A bayesian perspective, Acta Numer, 19, 451-559 (2010) · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[35] Tierney L (1998) A note on metropolis-hastings kernels for general state spaces, Ann Appl Probab, p 1-9 · Zbl 0935.60053
[36] Tierney, L., Markov chains for exploring posterior distributions, Annal Stat Pages, 1, 1701-1728 (1994) · Zbl 0829.62080
[37] Vershik, A., Long history of the Monge-Kantorovich transportation problem, Math Intell, 35, 4, 1-9 (2013) · Zbl 1284.01041 · doi:10.1007/s00283-013-9380-x
[38] Villani C (2003) Topics in optimal transportation: american mathematical society, Grad Stud Math, 58 · Zbl 1106.90001
[39] Villani C (2009) Optimal transport: old and new, Vol. 338, Springer · Zbl 1156.53003
[40] Vogel C (2002) Computational methods for inverse problems, Soc Ind Appl Math · Zbl 1008.65103
[41] Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E., Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, 13, 4, 600-612 (2004) · doi:10.1109/TIP.2003.819861
[42] Wang L, Ding M, Zheng G. A general fractional total variation-Gaussian (GFTG) prior for Bayesian inverse problems, arXiv:2111.02797
[43] Wang L, Ding M, Zheng G. A Hadamard fractioal total variation-Gaussian (HFTG) prior for Bayesian inverse problems, arXiv:2110.15656 · Zbl 07725200
[44] Yan, L.; Fu, C.; Dou, F., A computational method for identifying a Spacewise-dependent heat source, Int J Numer Methods Biomed Eng, 26, 5, 597-608 (2010) · Zbl 1190.65145
[45] Yao, Z.; Hu, Z.; Li, J., A TV-gaussian prior for infinite-dimensional bayesian inverse problems and its numerical implementations, Inverse Prob, 32, 7 (2016) · Zbl 1382.65164 · doi:10.1088/0266-5611/32/7/075006
[46] Zhang, J.; Chen, K., A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J Imag Sci, 8, 4, 2487-2518 (2015) · Zbl 1327.62388 · doi:10.1137/14097121X
[47] Zhang, J.; Chen, K., Variational image registration by a total fractional-order variation model, J Comput Phys, 293, 442-461 (2015) · Zbl 1349.94050 · doi:10.1016/j.jcp.2015.02.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.