×

Self-assembly of geometric space from random graphs. (English) Zbl 1503.83005

Summary: We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.

MSC:

83C45 Quantization of the gravitational field
13F07 Euclidean rings and generalizations
05C80 Random graphs (graph-theoretic aspects)
57Q70 Discrete Morse theory and related ideas in manifold topology
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
39A12 Discrete version of topics in analysis
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
82C70 Transport processes in time-dependent statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] Oriti D (ed) 2009 Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter (Cambridge: Cambridge University Press) · Zbl 1168.83002 · doi:10.1017/CBO9780511575549
[2] Rovelli C 2010 Quantum Gravity (Cambridge: Cambridge University Press)
[3] Rovelli C and Smolin L 1995 Discreteness of area and volume in quantum gravity Nucl. Phys. B 442 593-619 · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[4] Ashtekar A, Rovelli C and Smolin L 1992 Weaving a classical geometry with quantum threads Phys. Rev. Lett.69 237-40 · Zbl 0968.83510 · doi:10.1103/PhysRevLett.69.237
[5] Bombelli L, Lee J, Meyer D and Sorkin R D 1987 Space-time as a causal set Phys. Rev. Lett.59 521-4 · doi:10.1103/PhysRevLett.59.521
[6] Henson J 2006 The causal set approach to quantum gravity Approaches to Quantum Gravity—Towards a New Understanding of Space, Time and Matter ed D Oriti (Cambridge: Cambridge University Press)
[7] Ellis G F R, Meissner K A and Nicolai H 2018 The physics of infinity Nat. Phys.14 770-2 · doi:10.1038/s41567-018-0238-1
[8] Ambjørn J, Jurkiewicz J and Loll R 2000 Lorentzian and Euclidean quantum gravity - analytical and numerical results M-Theory and Quantum Geometry ed L Thorlacius and T Jonsson (Dordrecht: Springer) pp 381-450 · Zbl 0982.83002 · doi:10.1007/978-94-011-4303-5_9
[9] Ambjørn J, Jurkiewicz J and Loll R 2009 Quantum gravitythe art of building spacetime Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter ed D Oriti (Cambridge: Cambridge University Press) · Zbl 1195.83002 · doi:10.1017/CBO9780511575549.022
[10] Ambjørn J A, Görlich A, Jurkiewicz J and Loll R 2012 Nonperturbative quantum gravity Phys. Rep.519 127-210 · doi:10.1016/j.physrep.2012.03.007
[11] Gross D J and Mende P F 1988 String theory beyond the Planck scale Nucl. Phys. B 303 407-54 · doi:10.1016/0550-3213(88)90390-2
[12] Witten E 2001 Reflections on the fate of spacetime Physics Meets Philosophy at the Planck Scale ed C Callendar and N Huggett (Cambridge: Cambridge University Press) pp 125-37 · doi:10.1017/CBO9780511612909.006
[13] Martinec E J 1990 Criticality, catastrophes and compactifications Physics and Mathematics of Strings: Memorial Volume for Vadim Knizhnik ed L Brink and A M Polyakov (Singapore: World Scientific) pp 389-433 · Zbl 0737.58060 · doi:10.1142/9789814434461_0010
[14] Han M and Hung L-Y 2017 Loop quantum gravity, exact holographic mapping, and holographic entanglement entropy Phys. Rev. D 95 024011 · doi:10.1103/PhysRevD.95.024011
[15] Chirco G, Oriti D and Zhang M 2018 Group field theory and tensor networks: towards a Ryu-Takayanagi formula in full quantum gravity Class. Quantum Grav.35 115011 · Zbl 1393.83015 · doi:10.1088/1361-6382/aabf55
[16] Glaser L, O’Connor D and Surya S 2018 Finite size scaling in 2d causal set quantum gravity Class. Quantum Grav.35 045006 · Zbl 1386.83063 · doi:10.1088/1361-6382/aa9540
[17] Bianconi G and Rahmede C 2016 Network geometry with flavor: from complexity to quantum geometry Phys. Rev. E 93 032315 · doi:10.1103/PhysRevE.93.032315
[18] Landau L D and Lifshitz E M 1980 Statistical Physics, Part (Oxford: Pergamon) (Third Revised and Enlarged Edition)
[19] Golfenfeld N 1992 Lectures on Phase Transitions and the Renormalization Group (Boulder, CO: Westview Press)
[20] Horowitz G and Polchinski J 2009 Gauge/gravity duality Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter ed D Oriti (Cambridge: Cambridge University Press) pp 169-86 · Zbl 1183.83041 · doi:10.1017/CBO9780511575549.012
[21] Nishimura J 2012 The origin of space-time as seen from matrix model simulations Prog. Theor. Exp. Phys.2012 01A101 · Zbl 07405523 · doi:10.1093/ptep/pts004
[22] Ryu S and Takayanagi T 2006 Holographic derivation of entanglement entropy from the anti de Sitter space/conformal field theory correspondence Phys. Rev. Lett.96 181602 · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[23] Qi X-L 2013 Exact holographic mapping and emergent space-time geometry unpublished (arXiv:1309.6282 [hep-th])
[24] Hayden P, Nezami S, Qi X-L, Thomas N, Walter M and Yang Z 2016 Holographic duality from random tensor networks J. High Energy Phys.JHEP11(2016) 009 · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[25] Hawking S W 1979 Euclidean quantum gravity Recent Developments in Gravitation: Cargèse 1978 ed M Léevy and S Deser (New York: Plenum) pp 145-74 · doi:10.1007/978-1-4613-2955-8_4
[26] Glimm J and Jaffe A 1981 Quantum Physics: a Functional Integral Point of View (New York: Springer) · Zbl 0461.46051 · doi:10.1007/978-1-4684-0121-9
[27] Newman M E J and Barkema G T 2001 Monte Carlo Methods in Statistical Physics (Oxford: Clarendon)
[28] Ambjørn J A, Durhuus B and Johnsson T 2009 Quantum Geometry: a Statistical Field Theory Approach (Cambridge: Cambridge University Press)
[29] Weinberg S 1979 Ultraviolet divergences in quantum theories of gravitation General Relativity: an Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press) pp 790-832 · Zbl 0424.53001
[30] Benincasa D M T and Dowker F 2010 The scalar curvature of a causal set Phys. Rev. Lett.104 181301 · doi:10.1103/PhysRevLett.104.181301
[31] Albert R and Barabási A-L 2002 Statistical mechanics of complex networks Rev. Mod. Phys.74 47-97 · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[32] Park J and Newman M E J 2004 Statistical mechanics of networks Phys. Rev. E 70 066117 · doi:10.1103/PhysRevE.70.066117
[33] Trugenberger C A 2015 Quantum gravity as an information network self-organization of a 4D universe Phys. Rev. D 92 084014 · doi:10.1103/PhysRevD.92.084014
[34] Trugenberger C A 2015 Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism Phys. Rev. E 92 062818 · doi:10.1103/PhysRevE.92.062818
[35] Trugenberger C A 2016 Random holographic large worlds with emergent dimensions Phys. Rev. E 94 052305 · doi:10.1103/PhysRevE.94.052305
[36] Diamantini M C and Trugenberger C A 2017 Topological network entanglement as order parameter for the emergence of geometry New J. Phys.19 103024 · Zbl 1516.83019 · doi:10.1088/1367-2630/aa8f08
[37] Trugenberger C A 2017 Combinatorial quantum gravity: geometry from random bits J. High Energy Phys.JHEP09(2017) 045 · Zbl 1382.83046 · doi:10.1007/JHEP09(2017)045
[38] Ollivier Y 2009 Ricci curvature of Markov chains on metric spaces J. Funct. Anal.256 810-64 · Zbl 1181.53015 · doi:10.1016/j.jfa.2008.11.001
[39] Ollivier Y 2007 Ricci curvature of metric spaces C. R. Math.345 643-6 · Zbl 1132.53011 · doi:10.1016/j.crma.2007.10.041
[40] Jost J and Liu S 2014 Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs Discrete Comput. Geom.51 300-22 · Zbl 1294.05061 · doi:10.1007/s00454-013-9558-1
[41] Cho H J and Paeng S-H 2013 Olliviers Ricci curvature and the coloring of graphs Eur. J. Comb.34 916-22 · Zbl 1260.05078 · doi:10.1016/j.ejc.2013.01.004
[42] Bhattacharya B B and Mukherjee S 2015 Exact and asymptotic results on coarse Ricci curvature of graphs Discrete Math.338 23-42 · Zbl 1301.05078 · doi:10.1016/j.disc.2014.08.012
[43] Loisel B and Romon P 2014 Ricci curvature on polyhedral surfaces via optimal transportation Axioms3 119-39 · Zbl 1311.05043 · doi:10.3390/axioms3010119
[44] Villani C 2009 Optimal Transport: Old and New (New York: Springer) · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[45] Samal A, Sreejith R P, Gu J, Liu S, Saucan E and Jost J 2018 Comparative analysis of two discretizations of Ricci curvature for complex networks Sci. Rep.8 8650 · doi:10.1038/s41598-018-27001-3
[46] Dall J and Christensen M 2002 Random geometric graphs Phys. Rev. E 66 016121 · doi:10.1103/PhysRevE.66.016121
[47] Krioukov D 2016 Clustering implies geometry in networks Phys. Rev. Lett.116 208302 · doi:10.1103/PhysRevLett.116.208302
[48] Najman L and Romon P (ed) 2017 Modern Approaches to Discrete Curvature (New York: Springer) · Zbl 1380.53007 · doi:10.1007/978-3-319-58002-9
[49] Ni C-C, Lin Y-Y, Gao J, Gu X D and Saucan E 2015 Ricci curvature of the internet topology IEEE Conf. on Computer Communications (INFOCOM) · doi:10.1109/INFOCOM.2015.7218668
[50] Sandhu R, Georgiou T, Reznik E, Zhu L, Kolesov I, Senbabaoglu Y and Tannenbaum A 2015 Graph curvature for differentiating cancer networks Sci. Rep.5 12323 · doi:10.1038/srep12323
[51] Sandhu R S, Georgiou T T and Tannenbaum A R 2016 Ricci curvature: an economic indicator for market fragility and systemic risk Sci. Adv.2 e1501495 · doi:10.1126/sciadv.1501495
[52] Klitgaard N and Loll R 2018 Introducing quantum Ricci curvature Phys. Rev. D 97 046008 · doi:10.1103/PhysRevD.97.046008
[53] Klitgaard N and Loll R 2018 Implementing quantum Ricci curvature Phys. Rev. D 97 106017 · doi:10.1103/PhysRevD.97.106017
[54] Pouryahya M, Mathews J and Tannenbaum A 2017 Comparing three notions of discrete ricci curvature on biological networks (arXiv:1712.02943 [q-bio.MN])
[55] Diestel R 2017 Graph Theory 5th edn (New York: Springer) · Zbl 1375.05002 · doi:10.1007/978-3-662-53622-3
[56] Wormald N C 2013 Models of random regular graphs Surveys in Combinatorics 1999 ed J D Lamb and D A Preece (Cambridge: Cambridge University Press) pp 239-98 · Zbl 0935.05080
[57] Pilati M 1982 Strong coupling quantum gravity: an introduction Quantum Structure of Space and Time ed M J Duff and C J Isham (Cambridge: Cambridge University Press) pp 53-70
[58] Ziegler G M 1995 Lectures on Polytopes (New York: Springer) (Revised First Edition) · Zbl 0823.52002 · doi:10.1007/978-1-4613-8431-1
[59] Harary F and Manvel B 1971 On the number of cycles in graphs Mat. Čas.21 55-63 · Zbl 0209.55404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.