×

\(\operatorname{Aut}\)-invariant quasimorphisms on groups. (English) Zbl 1540.20076

A quasimorphism (or quasicharacter) on a discrete group \(G\) is a function \(f : G \rightarrow \mathbb{R}\) such that the defect \(D(f)=\sup_{g,h \in G}\{ |f(g)+f(h)-f(gh) |\}\) is bounded. A quasimorphism is homogeneous (or a pseudocharacter) if it restricts to a homomorphism on every cyclic subgroup of \(G\). In the study of quasimorphisms, free groups have long been a central case study. This case is especially important, since homogeneous quasimorphisms on free groups can be used to compute stable commutator length on free groups, which in turn gives upper bounds on the stable commutator length of elements in any group (see [D. Calegari, slc. Tokyo: Mathematical Society of Japan. (2009; Zbl 1187.20035)]).
Given an automorphism \(\varphi \in \operatorname{Aut}(G)\) and a quasimorphism \(f : G \rightarrow \mathbb{R}\), we obtain a quasimorphism \(f \circ \varphi\). This yields an action of \(\operatorname{Aut}(G)\) on the space of quasimorphisms on \(G\), which preserves the subspace of homogeneous quasimorphisms. The main results proved in the paper under review are the following:
Theorem B: Let \(G\) be a finitely generated group and suppose that one of the following holds: (1) \(G\) is a non-elementary Gromov-hyperbolic group; (2) \(G\) is non-elementary hyperbolic relative to a collection of finitely generated subgroups \(\mathcal{P}\) and no group in \(\mathcal{P}\) is relatively hyperbolic; (3) \(G\) has infinitely many ends; (4) \(G\) is a graph product of finitely generated abelian groups on a finite graph and \(G\) is not virtually abelian. Then there exists an infinite-dimensional space of \(\operatorname{Aut}\)-invariant homogeneous quasimorphisms on \(G\).
All four items include the free group, which recovers the case of rank \(2\) [M. Brandenbursky and M. Marcinkowski, Comment. Math. Helv. 94, No. 4, 661–687 (2019; Zbl 1433.57008)]. Item (4) settles Problem 5.1 in [M. Marcinkowski, Mich. Math. J. 69, No. 2, 285–295 (2020; Zbl 1530.20107)] and recovers some results of [B. Karlhofer, “Aut-invariant quasimorphisms on graph products of abelian groups”, Preprint, arXiv:2107.12171]. Items (2) and (3) recovers the main result of [B. Karlhofer, Ann. Math. Qué. 47, No. 2, 475–493 (2023; Zbl 1535.20217)] for finitely generated groups.
Theorem E: Let \(G\) be a group and suppose that \(G\) is not virtually central and \(\operatorname{Aut}(G)\) is acylindrically hyperbolic. Then there exists an infinitedimensional space of \(\operatorname{Aut}\)-invariant homogeneous quasimorphisms on \(G\).

MSC:

20F65 Geometric group theory
20E36 Automorphisms of infinite groups
20F67 Hyperbolic groups and nonpositively curved groups
20J05 Homological methods in group theory

References:

[1] M. Ab\'ert, Some questions, https://www.renyi.hu/ abert/questions.pdf, 2010.
[2] Bestvina, Mladen, Stable commutator length on mapping class groups, Ann. Inst. Fourier (Grenoble), 871-898 (2016) · Zbl 1397.20050
[3] M. Bestvina, R. Dickmann, G. Domat, S. Kwak, P. Patel, and E. Stark. Free products from spinning and rotating families. 2010.10735, to appear in Enseign. Math., 2020. · Zbl 1521.20086
[4] Bestvina, Mladen, Bounded cohomology of subgroups of mapping class groups, Geom. Topol., 69-89 (2002) · Zbl 1021.57001 · doi:10.2140/gt.2002.6.69
[5] Bestvina, Mladen, A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., 11-40 (2009) · Zbl 1203.53041 · doi:10.1007/s00039-009-0717-8
[6] Bestvina, Mladen, A hyperbolic \({\operatorname{Out}}(F_n)\)-complex, Groups Geom. Dyn., 31-58 (2010) · Zbl 1190.20017 · doi:10.4171/GGD/74
[7] B. Br\"uck, F. Fournier-Facio, and C. L\"oh, Median quasimorphisms on CAT(0) cube complexes and their cup products, Preprint, 2209.05811, 2022.
[8] Brandenbursky, Michael, Aut-invariant norms and Aut-invariant quasimorphisms on free and surface groups, Comment. Math. Helv., 661-687 (2019) · Zbl 1433.57008 · doi:10.4171/cmh/470
[9] Brezis, Haim, Functional analysis, Sobolev spaces and partial differential equations, Universitext, xiv+599 pp. (2011), Springer, New York · Zbl 1220.46002
[10] Brooks, Robert, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference. Some remarks on bounded cohomology, Ann. of Math. Stud., 53-63 (1978), Princeton Univ. Press, Princeton, N.J. · Zbl 0457.55002
[11] Brown, Kenneth S., Cohomology of groups, Graduate Texts in Mathematics, x+306 pp. (1982), Springer-Verlag, New York-Berlin · Zbl 0584.20036
[12] Bardakov, Valery, On the palindromic and primitive widths of a free group, J. Algebra, 574-585 (2005) · Zbl 1085.20011 · doi:10.1016/j.jalgebra.2004.11.003
[13] Calegari, Danny, What is \(\ldots\) stable commutator length?, Notices Amer. Math. Soc., 1100-1101 (2008) · Zbl 1152.57303
[14] Calegari, Danny, scl, MSJ Memoirs, xii+209 pp. (2009), Mathematical Society of Japan, Tokyo · Zbl 1187.20035 · doi:10.1142/e018
[15] Caprace, Pierre-Emmanuel, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., 1296-1319 (2010) · Zbl 1206.20046 · doi:10.1007/s00039-009-0042-2
[16] I. Chifan, A. Ioana, D. Osin, and B. Sun, Small cancellation and outer automorphisms of Kazhdan groups acting on hyperbolic spaces, Preprint, 2304.07455, 2023.
[17] Dahmani, F., Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., v+152 pp. (2017) · Zbl 1396.20041 · doi:10.1090/memo/1156
[18] Epstein, David B. A., The second bounded cohomology of word-hyperbolic groups, Topology, 1275-1289 (1997) · Zbl 0884.55005 · doi:10.1016/S0040-9383(96)00046-8
[19] Fern\'{o}s, Talia, Effective quasimorphisms on right-angled Artin groups, Ann. Inst. Fourier (Grenoble), 1575-1626 (2019) · Zbl 1480.20099
[20] Fouxe-Rabinovitch, D. I., \"{U}ber die Automorphismengruppen der freien Produkte. I, Rec. Math. [Mat. Sbornik] N.S., 265-276 (1940) · JFM 66.0066.04
[21] Fouxe-Rabinovitch, D. I., \"{U}ber die Automorphismengruppen der freien Produkte. II, Rec. Math. [Mat. Sbornik] N.S., 183-220 (1941) · Zbl 0025.00904
[22] Frigerio, Roberto, Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, xvi+193 pp. (2017), American Mathematical Society, Providence, RI · Zbl 1398.57003 · doi:10.1090/surv/227
[23] Fujiwara, Koji, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. (3), 70-94 (1998) · Zbl 0891.20027 · doi:10.1112/S0024611598000033
[24] Fujiwara, Koji, The second bounded cohomology of an amalgamated free product of groups, Trans. Amer. Math. Soc., 1113-1129 (2000) · Zbl 1053.20517 · doi:10.1090/S0002-9947-99-02282-5
[25] A. Genevois. Automorphisms of graph products of groups and acylindrical hyperbolicity. 1807.00622, to appear in Mem. Amer. Math. Soc., 2018.
[26] Genevois, Anthony, Negative curvature in automorphism groups of one-ended hyperbolic groups, J. Comb. Algebra, 305-329 (2019) · Zbl 1515.20219 · doi:10.4171/JCA/33
[27] Genevois, Anthony, Acylindrical hyperbolicity of automorphism groups of infinitely ended groups, J. Topol., 963-991 (2021) · Zbl 07433665
[28] Ghys, \'{E}tienne, The Lefschetz centennial conference, Part III. Groupes d’hom\'{e}omorphismes du cercle et cohomologie born\'{e}e, Contemp. Math., 81-106 (1984), Amer. Math. Soc., Providence, RI · Zbl 0761.57016 · doi:10.24033/msmf.358
[29] Guirardel, Vincent, Splittings and automorphisms of relatively hyperbolic groups, Groups Geom. Dyn., 599-663 (2015) · Zbl 1368.20037 · doi:10.4171/GGD/322
[30] A. Genevois and A. Martin, Automorphism groups of cyclic products of groups, Preprint, 1803.07536, 2018.
[31] Grigorchuk, R. I., Combinatorial and geometric group theory. Some results on bounded cohomology, London Math. Soc. Lecture Note Ser., 111-163 (1993), Cambridge Univ. Press, Cambridge · Zbl 0853.20034
[32] A. Hase, Dynamics of \(Out(F_n)\) on the second bounded cohomology of \(F_n\), Preprint, 1805.00366, 2018.
[33] Hegarty, Peter, The absolute centre of a group, J. Algebra, 929-935 (1994) · Zbl 0817.20037 · doi:10.1006/jabr.1994.1318
[34] Hegarty, Peter V., Autocommutator subgroups of finite groups, J. Algebra, 556-562 (1997) · Zbl 0876.20015 · doi:10.1006/jabr.1996.6921
[35] Heuer, Nicolaus, Bounded cohomology and simplicial volume. Stable commutator length, London Math. Soc. Lecture Note Ser., 65-76 (2023), Cambridge Univ. Press, Cambridge · Zbl 07595819
[36] Handel, Michael, Second bounded cohomology and WWPD, Kyoto J. Math., 873-904 (2021) · Zbl 1490.57027 · doi:10.1215/21562261-2021-0017
[37] Hartnick, Tobias, On quasioutomorphism groups of free groups and their transitivity properties, J. Algebra, 242-281 (2016) · Zbl 1366.20015 · doi:10.1016/j.jalgebra.2015.10.010
[38] B. Karlhofer, Aut-invariant quasimorphisms on free products, Ann.Math.Qu\'e. 2021, pages 1-19.
[39] B. Karlhofer, Aut-invariant quasimorphisms on graph products of abelian groups, Preprint, 2107.12171, 2021.
[40] Kawasaki, Morimichi, \( \hat G\)-invariant quasimorphisms and symplectic geometry of surfaces, Israel J. Math., 845-871 (2022) · Zbl 1509.53082 · doi:10.1007/s11856-021-2283-1
[41] M. Kawasaki, M. Kimura, S. Maruyama, T. Matsushita, and M. Mimura, Mixed commutator lengths, wreath products and general ranks, Preprint, 2203.04048, 2022. Kodai Math J., to appear. · Zbl 1529.20047
[42] M. Kawasaki, M. Kimura, S. Maruyama, T. Matsushita, and M. Mimura, Survey on invariant quasimorphisms and stable mixed commutator length, Preprint, 2212.11180, 2022.
[43] Kawasaki, Morimichi, Bavard’s duality theorem for mixed commutator length, Enseign. Math., 441-481 (2022) · Zbl 07584665 · doi:10.4171/lem/1037
[44] Malyutin, A. V., Writhe of (closed) braids, St. Petersburg Math. J.. Algebra i Analiz, 59-91 (2004) · Zbl 1088.57008 · doi:10.1090/S1061-0022-05-00879-4
[45] Marcinkowski, Micha\l, Aut-invariant word norm on right-angled Artin and right-angled Coxeter groups, Michigan Math. J., 285-295 (2020) · Zbl 1530.20107 · doi:10.1307/mmj/1573873440
[46] G. A. Miller, Automorphism commutators, Proc. Natl. Acad. Sci. USA 15 (1929), no. 8, 672-675. · JFM 55.0672.03
[47] S. Maruyama, T. Matsushita, and M. Mimura, SCL and mixed SCL are not equivalent for surface groups, Preprint, 2203.09221, 2022.
[48] Minasyan, Ashot, Correction to: Acylindrical hyperbolicity of groups acting on trees [ MR3368093], Math. Ann., 895-900 (2019) · Zbl 1453.20060 · doi:10.1007/s00208-018-1699-3
[49] Monod, Nicolas, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, x+214 pp. (2001), Springer-Verlag, Berlin · Zbl 0967.22006 · doi:10.1007/b80626
[50] Osin, D., Acylindrically hyperbolic groups, Trans. Amer. Math. Soc., 851-888 (2016) · Zbl 1380.20048 · doi:10.1090/tran/6343
[51] Polterovich, Leonid, Function theory on symplectic manifolds, CRM Monograph Series, xii+203 pp. (2014), American Mathematical Society, Providence, RI · Zbl 1310.53002 · doi:10.1090/crmm/034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.