×

Polynomial stability of piezoelectric beams with magnetic effect and tip body. (English) Zbl 07885409

Summary: In this paper, we consider a dissipative system of one-dimensional piezoelectric beam with magnetic effect and a tip load at the free end of the beam, which is modeled as a special form of double boundary dissipation. Our main aim is to study the well-posedness and asymptotic behavior of this system. By introducing two functions defined on the right boundary, we first transform the original problem into a new abstract form, so as to show the well-posedness of the system by using Lumer-Phillips theorem. We then divide the original system into a conservative system and an auxiliary system, and show that the auxiliary problem generates a compact operator. With the help of Weyl’s theorem, we obtain that the system is not exponentially stable. Moreover, we prove the polynomial stability of the system by using a result of Borichev and Tomilov (Math. Ann. 347 (2010), 455-478).
© 2024 Wiley-VCH GmbH.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L53 Initial-boundary value problems for second-order hyperbolic systems
47D06 One-parameter semigroups and linear evolution equations

References:

[1] Afilal, M., Guesmia, A., Soufyane, A.: Stability of a linear thermoelastic Bresse system with second sound under new conditions on the coefficients. ZAMM Z. Angew. Math. Mech.103(10), e202200275 (2023). https://doi.org/10.1002/zamm.202200275 · Zbl 1530.35030 · doi:10.1002/zamm.202200275
[2] Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures‐Modeling, Estimation and Control. Masson, John Wiley & Sons, Paris (1996) · Zbl 0882.93001
[3] Belhannache, F., Messaoudi, S.A.: On the general stability of a viscoelastic wave equation with an integral condition. Acta Math. Appl. Sin. Engl. Ser.36(4), 857-869 (2020) · Zbl 1464.35020
[4] Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann.347(2), 455-478 (2010) · Zbl 1185.47044
[5] Cardozo, C.L., Jorge Silva, M.A., Ma, T.F., Muñoz Rivera, J.E.: Stability of Timoshenko systems with thermal coupling on the bending moment, Math. Nachr.292(12), 2537-2555 (2019) · Zbl 1439.35045
[6] Cuc, A., Giurgiutiu, V., Joshi, S., Tidwell, Z.: Structural health monitoring with piezoelectric wafer active sensors for space applications. AIAA J.45(12), 2838-2850 (2007)
[7] Dagdeviren, C., et al.: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. P. Natl. Acad. Sci. USA.111(5), 1927-1932 (2014)
[8] Dietl, J.M., Wickenheiser, A.M., Garcia, E.: A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart. Mater. Struct.19(5), 055018 (2010)
[9] Engel, K.J., Nagel, R.: One‐parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, vol. 194. Springer‐Verlag, New York (2000) · Zbl 0952.47036
[10] Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust.130(4), 041002 (2008)
[11] Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. John Wiley & Sons, Hoboken (2011)
[12] Feng, B., Almeida Junior, D.S., dosSantos, M.J., Rosário Miranda, L.G.: A new scenario for stability of nonlinear Bresse‐Timoshenko type systems with time dependent delay. ZAMM Z. Angew. Math. Mech.100(2), e201900160 (2020) · Zbl 07794851
[13] Feng, B., Özer, A.: Exponential stability results for the boundary‐controlled fully‐dynamic piezoelectric beams with various distributed and boundary delays. J. Math. Anal. Appl.508(1), 125845 (2022) · Zbl 1480.93339
[14] Galassi, C. (ed.), et al., (eds.): Piezoelectric materials: Advances in Science, Technology and Applications, vol. 76. Springer Science & Business Media, London (2012)
[15] Gohberg, I.C., Kreĭn, M.G.: Introduction to the theory of linear nonselfadjoint operators. Translated from the Russian by A. Feinstein, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence, RIxv+378 (1969) · Zbl 0181.13503
[16] Gu, G.Y., Zhu, L.M., Su, C.Y., Ding, H., Fatikow, S.: Modeling and control of piezo‐actuated nanopositioning stages: A survey. IEEE T. Autom. Sci. Eng.13(1), 313-332 (2014)
[17] Han, Z.‐J., Wang, G., Wang, J.: Explicit decay rate for a degenerate hyperbolic‐parabolic coupled system. ESAIM Control Optim. Calc. Var.26, 116 (2020) · Zbl 1459.35041
[18] Jorge Silva, M.A., Pinheiro, S.B.: Improvement on the polynomial stability for a Timoshenko system with type III thermoelasticity. Appl. Math. Lett.96, 95-100 (2019) · Zbl 1423.35247
[19] Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys.8(7), 975 (1969)
[20] Keddi, A.A., Apalara, T.A., Messaoudi, S.A.: Exponential and polynomial decay in a thermoelastic‐Bresse system with second sound. Appl. Math. Optim.77(2), 315-341 (2018) · Zbl 1388.35188
[21] Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim.25(6), 1417-1429 (1987) · Zbl 0632.93057
[22] Li, C., Xiao, T.J.: Polynomial stability for wave equations with Wentzell boundary conditions. J. Nonlinear Convex Anal.18(10), 1801-1814 (2017) · Zbl 1497.35313
[23] Liu, W., Kong, X., Li, G.: Lack of exponential decay for a laminated beam with structural damping and second sound. Ann. Polon. Math.124(3), 281-289 (2020) · Zbl 1445.35065
[24] Liu, W., Zhao, W.: Stabilization of a thermoelastic laminated beam with past history. Appl. Math. Optim.80(1), 103-133 (2019) · Zbl 1418.35343
[25] Maryati, T.K., Muñoz Rivera, J.E., Rambaud, A., Vera, O.: Stability of an \(N\)‐component Timoshenko beam with localized Kelvin‐Voigt and frictional dissipation. Electron. J. Differential Equations2018, 136 (2018) · Zbl 1397.35030
[26] Meeker, T.R.: Publication and proposed revision of ANSI/IEEE standard 176‐1987. IEEE. T. Ultrason. Ferr.43(5), 717-772 (1996)
[27] Messaoudi, S.A., Al‐Khulaifi, W.: General and optimal decay for a viscoelastic equation with boundary feedback. Topol. Methods Nonlinear Anal.51(2), 413-427 (2018) · Zbl 1395.35034
[28] Morris, K., Özer, A.Ö.: Strong stabilization of piezoelectric beams with magnetic effects. In: 52nd IEEE Conference on Decision and Control, 3014-3019 (2013). https://doi.org/10.1109/CDC.2013.6760341 · doi:10.1109/CDC.2013.6760341
[29] Morris, K.A., Özer, A.: Modeling and stabilizability of voltage‐actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim.52(4), 2371-2398 (2014) · Zbl 1300.93090
[30] Muñoz Rivera, J.E., Ávila, A.I.: Rates of decay to non homogeneous Timoshenko model with tip body. J. Differ. Equ.258(10), 3468-3490 (2015) · Zbl 1311.35031
[31] Mustafa, M.I.: Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems. Z. Angew. Math. Phys.72(2), 67 (2021) · Zbl 1464.35036
[32] Poblete, V., Toledo, F., Vera, O.: Polynomial stability of a piezoelectric beam with magnetic effect and a boundary dissipation of the fractional derivative type. Proc. Edinb. Math. Soc. (2)66(1), 23-53 (2023) · Zbl 1516.35400
[33] Ramos, A.J.A., Freitas, M.M., Almeida, D.S., Jesus, S.S., Moura, T.R.S.: Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Z. Angew. Math. Phys.70(2), 60 (2019) · Zbl 1417.90064
[34] Raposo, C.A., Vera Villagrán, O., Muñoz Rivera, J.E., Alves, M.S.: Hybrid laminated Timoshenko beam. J. Math. Phys.58(10), 101512 (2017) · Zbl 1374.74074
[35] Sunar, M.: 2.22 Piezoelectric materials. Compr. Energy Syst.2, 696‐719 (2018)
[36] Vargas, D.H.: Stability of a hybrid system with tip load damped. J. Differ. Equ.269(9), 7042-7058 (2020) · Zbl 1441.35057
[37] Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann.68(2), 220-269 (1910) · JFM 41.0343.01
[38] Yang, J.S.: A review of a few topics in piezoelectricity. Appl. Mech. Rev. Nov.59(6), 335-345 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.