×

Integrality in the Matching-Jack conjecture and the Farahat-Higman algebra. (English) Zbl 1512.05392

Summary: Using Jack polynomials, I. P. Goulden and D. M. Jackson [J. Algebra 166, No. 2, 364–378 (1994; Zbl 0830.20021)] have introduced a one parameter deformation \(\tau_b\) of the generating series of bipartite maps, which generalizes the partition function of \(\beta \)-ensembles of random matrices. The Matching-Jack conjecture suggests that the coefficients \(c^\lambda_{\mu ,\nu }\) of the function \(\tau_b\) in the power-sum basis are non-negative integer polynomials in the deformation parameter \(b\). M. Dołęga and V. Féray [Duke Math. J. 165, No. 7, 1193–1282 (2016; Zbl 1338.60017)] have proved the “polynomiality” part in the Matching-Jack conjecture, namely that coefficients \(c^\lambda_{\mu ,\nu }\) are in \(\mathbb{Q}[b]\). In this paper, we prove the “integrality” part, i.e. that the coefficients \(c^\lambda_{\mu ,\nu }\) are in \(\mathbb{Z}[b]\). The proof is based on a recent work of the author that deduces the Matching-Jack conjecture for marginal sums \(\overline{ c}^\lambda_{\mu ,l}\) from an analog result for the \(b\)-conjecture, established in [G. Chapuy and M. Dołęga, Adv. Math. 409 A, Article ID 108645, 72 p. (2022; Zbl 1498.05278)]. A key step in the proof involves a new connection with the graded Farahat-Higman algebra.

MSC:

05E05 Symmetric functions and generalizations
15B52 Random matrices (algebraic aspects)
20C30 Representations of finite symmetric groups

References:

[1] Alexandrov, A., Weighted Hurwitz numbers and topological recursion, Comm. Math. Phys., 237-305 (2020) · Zbl 1472.37078 · doi:10.1007/s00220-020-03717-0
[2] V. Bonzom, G. Chapuy, and M. Doega, \(b\)-monotone Hurwitz numbers: Virasoro constraints, BKP hierarchy, and \(O(N)\)-BGW integral, Int. Math. Res. Not. IMRN rnac177 (2022).
[3] H. Ben Dali, Generating series of non-orientable constellations and marginal sums in Matching-Jack conjecture, Algebra. Comb. 5 no. 6, pp. 1299-1336 (2022). · Zbl 1504.05293
[4] B. Bychkov, P. Dunin-Barkowski, M. Kazarian, and S. Shadrin, Topological recursion for Kadomtsev-Petviashvili tau functions of hypergeometric type, Preprint, 2012.14723.
[5] B\'{e}dard, Fran\c{c}ois, The poset of conjugacy classes and decomposition of products in the symmetric group, Canad. Math. Bull., 152-160 (1992) · Zbl 0725.20010 · doi:10.4153/CMB-1992-022-9
[6] Chapuy, Guillaume, Non-orientable branched coverings, \(b\)-Hurwitz numbers, and positivity for multiparametric Jack expansions, Adv. Math., Paper No. 108645, 72 pp. (2022) · Zbl 1498.05278 · doi:10.1016/j.aim.2022.108645
[7] Corteel, Sylvie, Content evaluation and class symmetric functions, Adv. Math., 315-336 (2004) · Zbl 1059.05104 · doi:10.1016/j.aim.2003.09.010
[8] Do\l \polhk ega, Maciej, Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., 1193-1282 (2016) · Zbl 1338.60017 · doi:10.1215/00127094-3449566
[9] Do\l \polhk ega, Maciej, Cumulants of Jack symmetric functions and the \(b\)-conjecture, Trans. Amer. Math. Soc., 9015-9039 (2017) · Zbl 1371.05310 · doi:10.1090/tran/7191
[10] Do\l \polhk ega, Maciej, Jack polynomials and orientability generating series of maps, S\'{e}m. Lothar. Combin., Art. B70j, 50 pp. (2013) · Zbl 1311.05204
[11] Do\l \polhk ega, Maciej, Top degree part in \(b\)-conjecture for unicellular bipartite maps, Electron. J. Combin., Paper No. 3.24, 39 pp. (2017) · Zbl 1369.05044
[12] Farahat, H. K., The centres of symmetric group rings, Proc. Roy. Soc. London Ser. A, 212-221 (1959) · Zbl 0084.03004 · doi:10.1098/rspa.1959.0060
[13] Goulden, I. P., Symmetric functions and Macdonald’s result for top connexion coefficients in the symmetric group, J. Algebra, 364-378 (1994) · Zbl 0830.20021 · doi:10.1006/jabr.1994.1157
[14] Goulden, I. P., Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions, Trans. Amer. Math. Soc., 873-892 (1996) · Zbl 0858.05097 · doi:10.1090/S0002-9947-96-01503-6
[15] Goulden, I. P., Maps in locally orientable surfaces, the double coset algebra, and zonal polynomials, Canad. J. Math., 569-584 (1996) · Zbl 0861.05062 · doi:10.4153/CJM-1996-029-x
[16] Guay-Paquet, Mathieu, Generating functions for weighted Hurwitz numbers, J. Math. Phys., 083503, 28 pp. (2017) · Zbl 1369.05013 · doi:10.1063/1.4996574
[17] Goupil, Alain, Factoring \(n\)-cycles and counting maps of given genus, European J. Combin., 819-834 (1998) · Zbl 0915.05007 · doi:10.1006/eujc.1998.0215
[18] Hanlon, Philip J., Hypergeometric functions on domains of positivity, Jack polynomials, and applications. Some combinatorial aspects of the spectra of normally distributed random matrices, Contemp. Math., 151-174 (1991), Amer. Math. Soc., Providence, RI · Zbl 0789.05092 · doi:10.1090/conm/138/1199126
[19] Ivanov, V., The algebra of conjugacy classes in symmetric groups, and partial permutations, J. Math. Sci. (New York). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 95-120, 265 (1999) · Zbl 0979.20002 · doi:10.1023/A:1012473607966
[20] Jack, Henry, A class of symmetric polynomials with a parameter, Proc. Roy. Soc. Edinburgh Sect. A, 1-18 (1970/71) · Zbl 0198.04606
[21] Jucys, A.-A. A., Symmetric polynomials and the center of the symmetric group ring, Rep. Mathematical Phys., 107-112 (1974) · Zbl 0288.20014 · doi:10.1016/0034-4877(74)90019-6
[22] Kanunnikov, Andrei L., A labelled variant of the matchings-Jack and hypermap-Jack conjectures, S\'{e}m. Lothar. Combin., Art. 45, 12 pp. (2018) · Zbl 1411.05262
[23] Kanunnikov, Andrei L., On the matchings-Jack conjecture for Jack connection coefficients indexed by two single part partitions, Electron. J. Combin., Paper 1.53, 30 pp. (2016) · Zbl 1335.05182
[24] Kazarian, Maxim, Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., 1057-1084 (2015) · Zbl 1332.37051 · doi:10.1007/s11005-015-0771-0
[25] La Croix, Michael Andrew, The combinatorics of the Jack parameter and the genus series for topological maps, 237 pp. (2009), ProQuest LLC, Ann Arbor, MI
[26] Lando, Sergei K., Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, xvi+455 pp. (2004), Springer-Verlag, Berlin · Zbl 1040.05001 · doi:10.1007/978-3-540-38361-1
[27] Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, x+475 pp. (1995), The Clarendon Press, Oxford University Press, New York · Zbl 0899.05068
[28] Matsumoto, Sho, Jucys-Murphy elements and unitary matrix integrals, Int. Math. Res. Not. IMRN, 362-397 (2013) · Zbl 1312.05143 · doi:10.1093/imrn/rnr267
[29] Stanley, Richard P., Some combinatorial properties of Jack symmetric functions, Adv. Math., 76-115 (1989) · Zbl 0743.05072 · doi:10.1016/0001-8708(89)90015-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.