×

Entanglement entropy and modular Hamiltonian of free fermion with deformations on a torus. (English) Zbl 1531.81030

Summary: In this work, we perturbatively calculate the modular Hamiltonian to obtain the entanglement entropy in a free fermion theory on a torus with three typical deformations, e.g., \(T\bar{T}\) deformation, local bilinear operator deformation, and mass deformation. For \(T\bar{T}\) deformation, we find that the leading order correction of entanglement entropy is proportional to the expectation value of the undeformed modular Hamiltonian. As a check, in the high/low-temperature limit, the entanglement entropy coincides with that obtained by the replica trick in the literature. Following the same perturbative strategy, we obtain the entanglement entropy of the free fermion vacuum state up to second-order by inserting a local bilinear operator deformation in a moving mirror setting. In the uniformly accelerated mirror, the first-order and second-order correction of entanglement entropy vanishes in the late time limit. For mass deformation, we derive the entanglement entropy up to first-order deformation and comment on the second-order correction.

MSC:

81P17 Quantum entropies
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, P06002 (2004) · Zbl 1082.82002
[2] Ryu, S.; Takayanagi, T., Aspects of Holographic Entanglement Entropy, JHEP, 08, 045 (2006) · doi:10.1088/1126-6708/2006/08/045
[3] Hubeny, VE; Rangamani, M.; Takayanagi, T., A Covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[4] N. Lashkari, Modular Hamiltonian for Excited States in Conformal Field Theory, Phys. Rev. Lett.117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].
[5] G. Sárosi and T. Ugajin, Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, JHEP01 (2018) 012 [arXiv:1705.01486] [INSPIRE]. · Zbl 1384.81120
[6] F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in Conformal Field Theory, Phys. Rev. Lett.106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].
[7] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett.110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].
[8] M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev. D88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].
[9] W.-z. Guo, S. He and J. Tao, Note on Entanglement Temperature for Low Thermal Excited States in Higher Derivative Gravity, JHEP08 (2013) 050 [arXiv:1305.2682] [INSPIRE].
[10] Allahbakhshi, D.; Alishahiha, M.; Naseh, A., Entanglement Thermodynamics, JHEP, 08, 102 (2013) · Zbl 1342.83093
[11] Blanco, DD; Casini, H.; Hung, L-Y; Myers, RC, Relative Entropy and Holography, JHEP, 08, 060 (2013) · Zbl 1342.83128 · doi:10.1007/JHEP08(2013)060
[12] Faulkner, T.; Guica, M.; Hartman, T.; Myers, RC; Van Raamsdonk, M., Gravitation from Entanglement in Holographic CFTs, JHEP, 03, 051 (2014) · Zbl 1333.83141 · doi:10.1007/JHEP03(2014)051
[13] Faulkner, T.; Leigh, RG; Parrikar, O.; Wang, H., Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP, 09, 038 (2016) · Zbl 1390.83106 · doi:10.1007/JHEP09(2016)038
[14] Jafferis, DL; Suh, SJ, The Gravity Duals of Modular Hamiltonians, JHEP, 09, 068 (2016) · Zbl 1390.83115 · doi:10.1007/JHEP09(2016)068
[15] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, JHEP, 06, 004 (2016) · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[16] Faulkner, T.; Li, M.; Wang, H., A modular toolkit for bulk reconstruction, JHEP, 04, 119 (2019) · Zbl 1415.81080 · doi:10.1007/JHEP04(2019)119
[17] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036 (2011) · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[18] J.J. Bisognano and E.H. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys.16 (1975) 985 [INSPIRE]. · Zbl 0316.46062
[19] J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys.17 (1976) 303 [INSPIRE]. · Zbl 0316.46062
[20] G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP12 (2013) 020 [arXiv:1305.3291] [INSPIRE].
[21] J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech.1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE]. · Zbl 1456.81364
[22] H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav.26 (2009) 185005 [arXiv:0903.5284] [INSPIRE]. · Zbl 1176.83071
[23] Mintchev, M.; Tonni, E., Modular Hamiltonians for the massless Dirac field in the presence of a boundary, JHEP, 03, 204 (2021) · Zbl 1461.81072 · doi:10.1007/JHEP03(2021)204
[24] P. Fries and I.A. Reyes, Entanglement Spectrum of Chiral Fermions on the Torus, Phys. Rev. Lett.123 (2019) 211603 [arXiv:1905.05768] [INSPIRE].
[25] I. Klich, D. Vaman and G. Wong, Entanglement Hamiltonians for chiral fermions with zero modes, Phys. Rev. Lett.119 (2017) 120401 [arXiv:1501.00482] [INSPIRE].
[26] Rosenhaus, V.; Smolkin, M., Entanglement Entropy: A Perturbative Calculation, JHEP, 12, 179 (2014) · doi:10.1007/JHEP12(2014)179
[27] Balakrishnan, S.; Faulkner, T.; Khandker, ZU; Wang, H., A General Proof of the Quantum Null Energy Condition, JHEP, 09, 020 (2019) · Zbl 1423.81149 · doi:10.1007/JHEP09(2019)020
[28] Faulkner, T.; Leigh, RG; Parrikar, O., Shape Dependence of Entanglement Entropy in Conformal Field Theories, JHEP, 04, 088 (2016)
[29] A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rényi entropies, Phys. Rev. D91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].
[30] Rosenhaus, V.; Smolkin, M., Entanglement Entropy for Relevant and Geometric Perturbations, JHEP, 02, 015 (2015) · Zbl 1388.81424 · doi:10.1007/JHEP02(2015)015
[31] S. Balakrishnan and O. Parrikar, Modular Hamiltonians for Euclidean Path Integral States, arXiv:2002.00018 [INSPIRE].
[32] R. Arias, M. Botta-Cantcheff, P.J. Martinez and J.F. Zarate, Modular Hamiltonian for holographic excited states, Phys. Rev. D102 (2020) 026021 [arXiv:2002.04637] [INSPIRE].
[33] Lashkari, N.; Liu, H.; Rajagopal, S., Modular flow of excited states, JHEP, 09, 166 (2021) · Zbl 1472.81147 · doi:10.1007/JHEP09(2021)166
[34] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D Quantum Field Theories, JHEP10 (2016) 112 [arXiv:1608.05534] [INSPIRE]. · Zbl 1390.81494
[35] Smirnov, FA; Zamolodchikov, AB, On space of integrable quantum field theories, Nucl. Phys. B, 915, 363 (2017) · Zbl 1354.81033 · doi:10.1016/j.nuclphysb.2016.12.014
[36] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \(T\overline{T} \), JHEP04 (2018) 010 [arXiv:1611.03470] [INSPIRE]. · Zbl 1390.81529
[37] P. Kraus, R. Monten and K. Roumpedakis, Refining the Cutoff 3d Gravity/\( T\overline{T}\) Correspondence, arXiv:2206.00674 [INSPIRE].
[38] W. Donnelly and V. Shyam, Entanglement entropy and \(T\overline{T}\) deformation, Phys. Rev. Lett.121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].
[39] B. Chen, L. Chen and P.-X. Hao, Entanglement entropy in \(T\overline{T} \)-deformed CFT, Phys. Rev. D98 (2018) 086025 [arXiv:1807.08293] [INSPIRE].
[40] T. Ota, Comments on holographic entanglements in cutoff AdS, arXiv:1904.06930 [INSPIRE].
[41] Donnelly, W.; LePage, E.; Li, Y-Y; Pereira, A.; Shyam, V., Quantum corrections to finite radius holography and holographic entanglement entropy, JHEP, 05, 006 (2020) · Zbl 1437.83109 · doi:10.1007/JHEP05(2020)006
[42] K. Allameh, A.F. Astaneh and A. Hassanzadeh, Aspects of holographic entanglement entropy for \(T\overline{T} \)-deformed CFTs, Phys. Lett. B826 (2022) 136914 [arXiv:2111.11338] [INSPIRE]. · Zbl 1486.83125
[43] M.R. Setare and S.N. Sajadi, Holographic entanglement entropy in \(T\overline{T} \)-deformed CFTs, Gen. Rel. Grav.54 (2022) 85 [arXiv:2203.16445] [INSPIRE]. · Zbl 1510.83106
[44] Chakraborty, S.; Giveon, A.; Itzhaki, N.; Kutasov, D., Entanglement beyond AdS, Nucl. Phys. B, 935, 290 (2018) · Zbl 1398.81175 · doi:10.1016/j.nuclphysb.2018.08.011
[45] H.-S. Jeong, K.-Y. Kim and M. Nishida, Entanglement and Rényi entropy of multiple intervals in \(T\overline{T} \)-deformed CFT and holography, Phys. Rev. D100 (2019) 106015 [arXiv:1906.03894] [INSPIRE].
[46] S. He and H. Shu, Correlation functions, entanglement and chaos in the \(T\overline{T} / J\overline{T} \)-deformed CFTs, JHEP02 (2020) 088 [arXiv:1907.12603] [INSPIRE].
[47] S. He, Note on higher-point correlation functions of the \(T\overline{T}\) or \(J\overline{T}\) deformed CFTs, Sci. China Phys. Mech. Astron.64 (2021) 291011 [arXiv:2012.06202] [INSPIRE].
[48] M. Asrat and J. Kudler-Flam, \( T\overline{T} \), the entanglement wedge cross section, and the breakdown of the split property, Phys. Rev. D102 (2020) 045009 [arXiv:2005.08972] [INSPIRE].
[49] B. Cardona and J. Molina-Vilaplana, Entanglement renormalization of a \(\text{T}\overline{\text{T}} \)-deformed CFT, JHEP07 (2022) 092 [arXiv:2203.00319] [INSPIRE].
[50] Y. Sun and J.-R. Sun, Note on the Rényi entropy of 2D perturbed fermions, Phys. Rev. D99 (2019) 106008 [arXiv:1901.08796] [INSPIRE].
[51] D.S. Ageev, A.I. Belokon and V.V. Pushkarev, From locality to irregularity: Introducing local quenches in massive scalar field theory, arXiv:2205.12290 [INSPIRE].
[52] M. Guica and R. Monten, Infinite pseudo-conformal symmetries of classical \(T\overline{T} , J\overline{T}\) and JT_a-deformed CFTs, SciPost Phys.11 (2021) 078 [arXiv:2011.05445] [INSPIRE].
[53] Kraus, P.; Monten, R.; Myers, RM, 3D Gravity in a Box, SciPost Phys., 11, 070 (2021) · doi:10.21468/SciPostPhys.11.3.070
[54] M. He, S. He and Y.-h. Gao, Surface charges in Chern-Simons gravity with \(T\overline{T}\) deformation, JHEP03 (2022) 044 [arXiv:2109.12885] [INSPIRE].
[55] Rangamani, M.; Rozali, M.; Vincart-Emard, A., Dynamics of Holographic Entanglement Entropy Following a Local Quench, JHEP, 04, 069 (2016) · Zbl 1388.81068
[56] P. Fries and I.A. Reyes, Entanglement and relative entropy of a chiral fermion on the torus, Phys. Rev. D100 (2019) 105015 [arXiv:1906.02207] [INSPIRE].
[57] M. Moosa, Entanglement in QFT and Holography, http://www.sms.edu.pk/wp-content/uploads/2018/03/Entanglement-Entropy.pdf .
[58] Rosenhaus, V.; Smolkin, M., Entanglement entropy, planar surfaces, and spectral functions, JHEP, 09, 119 (2014) · Zbl 1333.81044 · doi:10.1007/JHEP09(2014)119
[59] Herzog, CP; Nishioka, T., Entanglement Entropy of a Massive Fermion on a Torus, JHEP, 03, 077 (2013) · Zbl 1342.81495 · doi:10.1007/JHEP03(2013)077
[60] Nozaki, M.; Numasawa, T.; Matsuura, S., Quantum Entanglement of Fermionic Local Operators, JHEP, 02, 150 (2016) · doi:10.1007/JHEP02(2016)150
[61] I. Akal, Y. Kusuki, N. Shiba, T. Takayanagi and Z. Wei, Holographic moving mirrors, Class. Quant. Grav.38 (2021) 224001 [arXiv:2106.11179] [INSPIRE]. · Zbl 1511.83021
[62] W.M.H. Wan Mokhtar, Radiation from a receding mirror: Unruh-DeWitt detector distinguishes a Dirac fermion from a scalar boson, Class. Quant. Grav.37 (2020) 075011 [arXiv:1806.11511] [INSPIRE]. · Zbl 1479.83034
[63] I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A36 (2003) L205 [cond-mat/0212631]. · Zbl 1049.82011
[64] Blanco, D.; Garbarz, A.; Pérez-Nadal, G., Entanglement of a chiral fermion on the torus, JHEP, 09, 076 (2019) · Zbl 1423.81152 · doi:10.1007/JHEP09(2019)076
[65] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag (1997) [DOI] [INSPIRE]. · Zbl 0869.53052
[66] D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B455 (1995) 522 [cond-mat/9505127] [INSPIRE]. · Zbl 0925.81295
[67] S. He and Y. Sun, Correlation functions of CFTs on a torus with a \(T\overline{T}\) deformation, Phys. Rev. D102 (2020) 026023 [arXiv:2004.07486] [INSPIRE].
[68] S. He, Y. Sun and Y.-X. Zhang, \( T\overline{T} \)-flow effects on torus partition functions, JHEP09 (2021) 061 [arXiv:2011.02902] [INSPIRE]. · Zbl 1472.81221
[69] Kabat, DN; Strassler, MJ, A Comment on entropy and area, Phys. Lett. B, 329, 46 (1994) · doi:10.1016/0370-2693(94)90515-0
[70] Calabrese, P.; Cardy, J., Quantum Quenches in Extended Systems, J. Stat. Mech., 0706, P06008 (2007) · Zbl 1456.81358
[71] Y. Li and Y. Zhou, Cutoff AdS_3versus \(T\overline{T}\) CFT_2in the large central charge sector: correlators of energy-momentum tensor, JHEP12 (2020) 168 [arXiv:2005.01693] [INSPIRE].
[72] P. Kraus, J. Liu and D. Marolf, Cutoff AdS_3versus the \(T\overline{T}\) deformation, JHEP07 (2018) 027 [arXiv:1801.02714] [INSPIRE]. · Zbl 1395.81230
[73] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.0504 (2005) P04010 [cond-mat/0503393] [INSPIRE]. · Zbl 1456.82578
[74] P.C.W. Davies and S.A. Fulling, Radiation from a moving mirror in two-dimensional space-time conformal anomaly, Proc. Roy. Soc. Lond. A348 (1976) 393 [INSPIRE]. · Zbl 0404.53024
[75] S.W. Hawking, Black hole explosions, Nature248 (1974) 30 [INSPIRE]. · Zbl 1370.83053
[76] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[77] I.A. Reyes, Moving Mirrors, Page Curves, and Bulk Entropies in AdS2, Phys. Rev. Lett.127 (2021) 051602 [arXiv:2103.01230] [INSPIRE].
[78] I. Akal, Y. Kusuki, N. Shiba, T. Takayanagi and Z. Wei, Entanglement Entropy in a Holographic Moving Mirror and the Page Curve, Phys. Rev. Lett.126 (2021) 061604 [arXiv:2011.12005] [INSPIRE]. · Zbl 1511.83021
[79] L. Bianchi, S. De Angelis and M. Meineri, Radiation, entanglement and islands from a boundary local quench, arXiv:2203.10103 [INSPIRE].
[80] N.I. Akhiezer, Elements of the Theory of Elliptic Functions, American Mathematical Society (1990). · Zbl 0694.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.