×

Efficiently filling space. (English) Zbl 1530.26001

The main result of the paper says that for each \(k\in N\) there exists a space-filling function \(f:[0,1]\to[0,1]^k\) such that \(f\) is at most \((k+1)-\mathrm{to} -1\) at each \(y\in[0,1]^k\) (which means that card \((f^{-1}(\{y\}))\leqslant k+1\) for each \(y\in[0,1]^k\)), \(f\) is exactly \((k+1)-\mathrm{to} -1\) at a countable dense subset of \([0,1]^k\) and \(f\) is \(1-\mathrm{to}-1\) on a residual subset of \([0,1]\). The result is in a sense the best possible because from the classical theorem of Hurewicz (number 6 among the references) it follows that \(f\) is at least \((k+1)-\mathrm{to} -1\) at a countable dense set. The proof uses the generalization of so called Lebesgue partion of \([0,1]^k\) (number 10 among the references) as well as the above mentioned theorem of Hurewicz.

MSC:

26A03 Foundations: limits and generalizations, elementary topology of the line

Citations:

Zbl 1465.26003

References:

[1] L. E. J. Brouwer, “Beweis der Invarianz der Dimensionenzahl”, Math. Ann. 70:2 (1911), 161-165. · JFM 42.0416.02 · doi:10.1007/BF01461154
[2] S. Flaten, P. D. Humke, E. Olson, and T. Vo, “Delicate details of filling space”, Amer. Math. Monthly 128:2 (2021), 99-114. · Zbl 1458.26005 · doi:10.1080/00029890.2021.1845541
[3] S. Flaten, P. D. Humke, E. Olson, and T. Vo, “Filling gaps in space filling”, J. Math. Anal. Appl. 500:2 (2021), art. id. 125113. · Zbl 1465.26003 · doi:10.1016/j.jmaa.2021.125113
[4] D. Hilbert, “Ueber die stetige Abbildung einer Line auf ein Flächenstück”, Math. Ann. 38:3 (1891), 459-460. · JFM 23.0422.01 · doi:10.1007/BF01199431
[5] P. D. Humke and K. V. Huynh, “Finding keys to the Peano curve”, Acta Math. Hungar. 167:1 (2022), 255-277. · Zbl 1513.26001 · doi:10.1007/s10474-022-01242-1
[6] W. Hurewicz, “Über dimensionserhöhende stetige Abbildungen”, J. Reine Angew. Math. 169 (1933), 71-78. · Zbl 0006.32803 · doi:10.1515/crll.1933.169.71
[7] W. Hurewicz and H. Wallman, Dimension theory, Princeton Mathematical Series 4, Princeton University Press, 1941. · Zbl 0060.39808
[8] H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitive, Gauthier-Villars, Paris, 1904. · JFM 35.0377.01
[9] H. Lebesgue, “Sur les fonctions représentables analytiquement”, J. Math. Pures Appl. 1 (1905), 139-216. · JFM 36.0453.02
[10] H. Lebesgue, “Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à \[n\] et \[n+p\] dimensions”, Math. Ann. 70:2 (1911), 166-168. · JFM 42.0419.02 · doi:10.1007/BF01461155
[11] E. H. Moore, “On certain crinkly curves”, Trans. Amer. Math. Soc. 1:1 (1900), 72-90. · JFM 31.0564.03 · doi:10.2307/1986405
[12] E. Netto, “Beitrag zur Mannigfaltigkeitslehre”, J. Reine Angew. Math. 86 (1879), 263-268. · JFM 10.0342.01 · doi:10.1515/crll.1879.86.263
[13] G. Peano, “Sur une courbe, qui remplit toute une aire plane”, Math. Ann. 36:1 (1890), 157-160. · JFM 22.0405.01 · doi:10.1007/BF01199438
[14] N. Rose, “Hilbert-type space-filling curves”, 2001, available at https://tinyurl.com/Rose-Hilbert.
[15] H. Sagan, Space-filling curves, Springer, 1994. · Zbl 0806.01019 · doi:10.1007/978-1-4612-0871-6
[16] I. J. Schoenberg, “On the Peano curve of Lebesgue”, Bull. Amer. Math. Soc. 44:8 (1938), 519. · Zbl 0019.15901 · doi:10.1090/S0002-9904-1938-06792-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.