×

Spectral radius formulas involving generalized Aluthge transform. (English) Zbl 07500986

Let \(\mathcal{B(H)}\) be the algebra of all bounded operators defined on a complex Hilbert space \(\mathcal{H}\). An operator \(S \in \mathcal{B(H)}\) is said to be normaloid if \(r(S)=\|S\|\) where \(r(S)\) denotes the spectral radius of \(S\). For an operator \(S \in \mathcal{B(H)}\), there exists a unique polar decomposition \(S=U|S|\), where \(|S|=(S^{\ast}S)^{\frac{1}{2}}\) and \(U\) is the partial isometry satisfying \(\ker U=\ker S\). Under this polar decomposition, the \(\lambda\)-Aluthge transform of \(S\) is defined by \(\Delta_{\lambda}S=|S|^{\lambda}U|S|^{1-\lambda}\), \(\lambda \in [0,1]\). In particular, when \(\lambda=\frac{1}{2}\), it is called the Aluthge transform of \(S\), denoted \(\Delta_{1/2}S=|S|^{\frac{1}{2}}U|S|^{\frac{1}{2}}\). Moreover, the \(n\)th iterated Aluthge transform of \(S\) is defined as \(\Delta_{1/2}^{n}(S)=\Delta(\Delta_{1/2}^{n-1}(S))\) and \(\Delta_{1/2}^{1}(S)=\Delta(S)\) for any \(n \in \mathbb{N}\). Furthermore, the generalized Aluthge transform of \(S\) is defined as \(\Delta_{f,g}S=f(|S|)Ug(|S|)\), where \(f\) and \(g\) are continuous functions such that \(g(x)f(x)=x\), \(x \geq 0\).
In this paper, the authors express the spectral radius of \(S\) in \(\mathcal{B(H)}\) by using the properties of the generalized Aluthge transform of \(S\), the asymptotic behavior of powers of \(S\), the numerical radius, and the iterated generalized Aluthge transform. As some applications, they apply their results to normaloid operators.
Reviewer: Eungil Ko (Seoul)

MSC:

47A12 Numerical range, numerical radius
47B20 Subnormal operators, hyponormal operators, etc.

References:

[1] Cho, M., Spectral properties ofp-hyponormal operators, Glasgow Mathematical Journal, 36, 1, 117-122 (1994) · Zbl 0815.47023 · doi:10.1017/S0017089500030627
[2] Cho, M.; Huruya, T., Aluthge transformations and invariant subspaces of \(\text{p}-\) hyponormal operators, Hokkaido Mathematical Journal, 32, 2, 445-450 (2003) · Zbl 1068.47029 · doi:10.14492/hokmj/1350657534
[3] Yamazaki, T., An expression of spectral radius via Aluthge transformation, Proceedings of the American Mathematical Society, 130, 4, 1131-1137 (2002) · Zbl 1009.47010 · doi:10.1090/S0002-9939-01-06283-9
[4] Tam, T.-Y., \( \lambda \)-Aluthge iteration and spectral radius, Integral Equations and Operator Theory, 60, 4, 591-596 (2008) · Zbl 1162.47013 · doi:10.1007/s00020-008-1573-x
[5] Antezana, J.; Massey, P.; Stojanoff, D., \( \lambda \)-Aluthge transforms and Schatten ideals, Linear Algebra and its Application, 405, 177-199 (2005) · Zbl 1074.47006 · doi:10.1016/j.laa.2005.03.016
[6] Yamazaki, T., On numerical range of the Aluthge transformation, Linear Algebra and its Applications, 341, 1-3, 111-117 (2002) · Zbl 1021.47004 · doi:10.1016/S0024-3795(01)00333-0
[7] Nabvi Sales, S. M. S., On the hyponormal property of operators, Iranian Journal of Mathematical Sciences and Informatics, 15, 2, 21-30 (2020) · Zbl 07426481
[8] Jung, I. B.; Ko, E.; Pearcy, C., Aluthge transforms of operators, Integral Equations and Operator Theory, 37, 4, 437-448 (2000) · Zbl 0996.47008 · doi:10.1007/BF01192831
[9] Liu, X.; Ji, G., Some properties of the generalized Aluthge transform, Nihonkai Mathematical Journal, 15, 101-107 (2004) · Zbl 1092.47003
[10] Kittaneha, F.; Moslehian, M. S.; Yamazaki, T., Cartesian decomposition and numerical radius inequalities, Linear Algebra and its Applications, 471, 46-53 (2015) · Zbl 1322.47008 · doi:10.1016/j.laa.2014.12.016
[11] Yan, T.; Hyder, J.; Saeed Akram, M.; Farid, G.; Nonlapon, K., On numerical radius bounds involving generalized Aluthge transform, Journal of Function Spaces, 2022 (2022) · Zbl 07466776 · doi:10.1155/2022/2897323
[12] Chabbabi, F.; Mbedkhta, M., New formulas for the spectral radius via \(\lambda \)-Aluthge transform, Linear Algebra and its application, 515, 246-254 (2017) · Zbl 06668952 · doi:10.1016/j.laa.2016.11.022
[13] Aluthge, A., Onp-hyponormal operators for \(0<\text{p}<1\), Integral Equations Operator Theory, 13, 3, 307-315 (1990) · Zbl 0718.47015 · doi:10.1007/BF01199886
[14] Okubo, K., On weakly unitarily invariant norm and the \(\lambda \)-Aluthge transformation for invertible operator, Linear Algebra and its Applications, 419, 48-52 (2006) · Zbl 1108.15028
[15] Shebrawi, K.; Bakherad, M., Generalization of Aluthge transform of operators, Faculty of Sciences and Mathematics, University of Nis, Serbia, 32, 6465-6474 (2018) · Zbl 1497.47013
[16] Rota, G., On models for linear operators, Pure and Applied Mathematics, 13, 3, 469-472 (1960) · Zbl 0097.31604 · doi:10.1002/cpa.3160130309
[17] Goldberg, M.; Tadmor, E., On the numerical radius and its applications, Linear Algebra and its Applications, 42, 263-284 (1982) · Zbl 0479.47002 · doi:10.1016/0024-3795(82)90155-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.