×

Integrability in the weak noise theory. (English) Zbl 1521.60016

Summary: We consider the variational problem associated with the Freidlin-Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation (SHE). For a general class of initial-terminal conditions, we show that a minimizer of this variational problem exists, and any minimizer solves a system of imaginary-time Nonlinear Schrödinger equations. This system is integrable. Utilizing the integrability, we prove that the formulas from the physics work (see [A. Krajenbrink and P. Le Doussal, Phys. Rev. Lett. 127, No. 6, Article ID 064101, 8 p. (2021; doi:10.1103/PhysRevLett.127.064101)]) hold for every minimizer of the variational problem. As an application, we consider the Freidlin-Wentzell LDP for the SHE with the delta initial condition. Under a technical assumption on the poles of the reflection coefficients, we prove the explicit expression for the one-point rate function that was predicted in the physics works (see [P. Le Doussal et al., Phys. Rev. Lett. 117, No. 7, Article ID 070403, 5 p. (2016; doi:10.1103/PhysRevLett.117.070403); Krajenbrink and Le Doussal, loc. cit.]). Under the same assumption, we give detailed pointwise estimates of the most probable shape in the upper-tail limit.

MSC:

60F10 Large deviations
35C15 Integral representations of solutions to PDEs
49L12 Hamilton-Jacobi equations in optimal control and differential games

References:

[1] Tomer Asida, Eli Livne, and Baruch Meerson, Large fluctuations of a Kardar-Parisi-Zhang interface on a half line: the height statistics at a shifted point, Phys. Rev. E 99 (2019), no. 4, 042132.
[2] Ablowitz, M. J., Discrete and continuous nonlinear Schr\"{o}dinger systems, London Mathematical Society Lecture Note Series, x+257 pp. (2004), Cambridge University Press, Cambridge · Zbl 1057.35058
[3] Ablowitz, Mark J., Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, x+425 pp. (1981), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. · Zbl 0472.35002
[4] Christophe Bahadoran, A quasi-potential for conservation laws with boundary conditions, 1010.3624, 2010.
[5] Bodineau, T., Current large deviations for asymmetric exclusion processes with open boundaries, J. Stat. Phys., 277-300 (2006) · Zbl 1115.82020 · doi:10.1007/s10955-006-9048-4
[6] Bonnemain, Thibault, Lax connection and conserved quantities of quadratic mean field games, J. Math. Phys., Paper No. 083302, 14 pp. (2021) · Zbl 1472.81068 · doi:10.1063/5.0039742
[7] Bothner, Thomas, On the origins of Riemann-Hilbert problems in mathematics, Nonlinearity, R1-R73 (2021) · Zbl 1462.30070 · doi:10.1088/1361-6544/abb543
[8] Bettelheim, Eldad, Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the Kipnis-Marchioro-Presutti model, Phys. Rev. Lett., Paper No. 130602, 6 pp. (2022) · Zbl 1539.80005 · doi:10.1103/physrevlett.128.130602
[9] Pierre Cardaliaguet, Notes on mean field games, Technical Report, 2010.
[10] Cafasso, Mattia, A Riemann-Hilbert approach to the lower tail of the Kardar-Parisi-Zhang equation, Comm. Pure Appl. Math., 493-540 (2022) · Zbl 1487.35269 · doi:10.1002/cpa.21978
[11] Cafasso, Mattia, Airy kernel determinant solutions to the KdV equation and integro-differential Painlev\'{e} equations, Comm. Math. Phys., 1107-1153 (2021) · Zbl 1477.37080 · doi:10.1007/s00220-021-04108-9
[12] Corwin, Ivan, KPZ equation tails for general initial data, Electron. J. Probab., Paper No. 66, 38 pp. (2020) · Zbl 1456.60253 · doi:10.1214/20-ejp467
[13] Corwin, Ivan, Lower tail of the KPZ equation, Duke Math. J., 1329-1395 (2020) · Zbl 1457.35096 · doi:10.1215/00127094-2019-0079
[14] Ivan Corwin, Promit Ghosal, Alexandre Krajenbrink, Pierre Le Doussal, and Li-Cheng Tsai, Coulomb-gas electrostatics controls large fluctuations of the Kardar-Parisi-Zhang equation, Phys. Rev. Lett. 121 (2018), no. 6, 060201.
[15] Corwin, Ivan, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl., 1130001, 76 pp. (2012) · Zbl 1247.82040 · doi:10.1142/S2010326311300014
[16] Corwin, Ivan, Some recent progress in singular stochastic partial differential equations, Bull. Amer. Math. Soc. (N.S.), 409-454 (2020) · Zbl 1448.35003 · doi:10.1090/bull/1670
[17] Chandra, Ajay, Stochastic PDEs, regularity structures, and interacting particle systems, Ann. Fac. Sci. Toulouse Math. (6), 847-909 (2017) · Zbl 1421.81001 · doi:10.5802/afst.1555
[18] Das, Sayan, Law of iterated logarithms and fractal properties of the KPZ equation, Ann. Probab., 930-986 (2023) · Zbl 1516.35573 · doi:10.1214/22-aop1603
[19] Deift, P. A., Important developments in soliton theory. Long-time asymptotics for integrable nonlinear wave equations, Springer Ser. Nonlinear Dynam., 181-204 (1993), Springer, Berlin · Zbl 0926.35132
[20] Derrida, B., Free energy functional for nonequilibrium systems: an exactly solvable case, Phys. Rev. Lett., 150601, 4 pp. (2001) · doi:10.1103/PhysRevLett.87.150601
[21] Derrida, B., Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process, J. Statist. Phys., 775-810 (2003) · Zbl 1031.60083 · doi:10.1023/A:1022111919402
[22] Das, Sayan, Fractional moments of the stochastic heat equation, Ann. Inst. Henri Poincar\'{e} Probab. Stat., 778-799 (2021) · Zbl 1472.60051 · doi:10.1214/20-aihp1095
[23] Deift, P., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2), 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[24] Fokas, Athanassios S., A unified approach to boundary value problems, CBMS-NSF Regional Conference Series in Applied Mathematics, xvi+336 pp. (2008), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1181.35002 · doi:10.1137/1.9780898717068
[25] Faddeev, Ludwig D., Hamiltonian methods in the theory of solitons, Classics in Mathematics, x+592 pp. (2007), Springer, Berlin · Zbl 1111.37001
[26] Freidlin, M. I., Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xii+430 pp. (1998), Springer-Verlag, New York · Zbl 0922.60006 · doi:10.1007/978-1-4612-0611-8
[27] Ghosal, Promit, Lyapunov exponents of the SHE under general initial data, Ann. Inst. Henri Poincar\'{e} Probab. Stat., 476-502 (2023) · Zbl 1508.60067 · doi:10.1214/22-aihp1253
[28] Gu\'{e}ant, Olivier, Paris-Princeton Lectures on Mathematical Finance 2010. Mean field games and applications, Lecture Notes in Math., 205-266 (2011), Springer, Berlin · Zbl 1205.91027 · doi:10.1007/978-3-642-14660-2\_3
[29] Gaudreau Lamarre, Pierre Yves, KPZ equation with a small noise, deep upper tail and limit shape, Probab. Theory Related Fields, 885-920 (2023) · Zbl 1509.60084 · doi:10.1007/s00440-022-01185-2
[30] Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics. American Association of Physics Teachers, 2002. · Zbl 1132.70001
[31] Gomes, Diogo A., Regularity theory for mean-field game systems, SpringerBriefs in Mathematics, xiv+156 pp. (2016), Springer, [Cham] · Zbl 1391.91003 · doi:10.1007/978-3-319-38934-9
[32] Alexander K. Hartmann, Alexandre Krajenbrink, and Pierre Le Doussal. Probing large deviations of the Kardar-Parisi-Zhang equation at short times with an importance sampling of directed polymers in random media. Phys Rev E, 101(1):012134, 2020.
[33] Alexander K. Hartmann, Pierre Le Doussal, Satya N. Majumdar, Alberto Rosso, and Gregory Schehr, High-precision simulation of the height distribution for the KPZ equation, EPL 121 (2018), no. 6, 67004.
[34] Huang, Minyi, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 221-251 (2006) · Zbl 1136.91349
[35] Alexander K. Hartmann, Baruch Meerson, and Pavel Sasorov, Optimal paths of nonequilibrium stochastic fields: the Kardar-Parisi-Zhang interface as a test case, Phys. Rev. Res. 1 (2019), no. 3, 032043.
[36] Alexander K. Hartmann, Baruch Meerson, and Pavel Sasorov, Observing symmetry-broken optimal paths of the stationary Kardar-Parisi-Zhang interface via a large-deviation sampling of directed polymers in random media, Phys. Rev. E 104 (2021), no. 5, 054125.
[37] Lief Jensen, The asymmetric exclusion process in one dimension, Ph.D. Thesis, New York University, New York, 2000.
[38] Janas, Michael, Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation, Phys. Rev. E, 032133, 10 pp. (2016) · doi:10.1103/physreve.94.032133
[39] Kim, Yujin H., The lower tail of the half-space KPZ equation, Stochastic Process. Appl., 365-406 (2021) · Zbl 1480.60127 · doi:10.1016/j.spa.2021.09.001
[40] I. V. Kolokolov and S. E. Korshunov, Optimal fluctuation approach to a directed polymer in a random medium, Phys. Rev. B 75 (2007), no. 14, 140201.
[41] I. V. Kolokolov and S. E. Korshunov, Universal and nonuniversal tails of distribution functions in the directed polymer and Kardar-Parisi-Zhang problems, Phys. Rev. B 78 (2008), no. 2, 024206.
[42] I. V. Kolokolov and S. E. Korshunov, Explicit solution of the optimal fluctuation problem for an elastic string in a random medium, Phys. Rev. E 80 (2009), no. 3, 031107.
[43] Alexandre Krajenbrink and Pierre Le Doussal, Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation with Brownian initial condition, Phys. Rev. E 96 (2017), no. 2, 020102.
[44] Alexandre Krajenbrink and Pierre Le Doussal, Large fluctuations of the KPZ equation in a half-space, SciPost Phys. 5 (2018), 032. · Zbl 1459.82138
[45] Krajenbrink, Alexandre, Simple derivation of the \((-\lambda H)^{5/2}\) tail for the 1D KPZ equation, J. Stat. Mech. Theory Exp., 063210, 32 pp. (2018) · Zbl 1459.82138 · doi:10.1088/1742-5468/aac90f
[46] Alexandre Krajenbrink and Pierre Le Doussal, Linear statistics and pushed Coulomb gas at the edge of \(\beta \)-random matrices: four paths to large deviations, EPL 125 (2019), no. 2, 20009.
[47] Krajenbrink, Alexandre, Inverse scattering of the Zakharov-Shabat system solves the weak noise theory of the Kardar-Parisi-Zhang equation, Phys. Rev. Lett., Paper No. 064101, 8 pp. (2021) · doi:10.1103/physrevlett.127.064101
[48] Krajenbrink, Alexandre, Inverse scattering solution of the weak noise theory of the Kardar-Parisi-Zhang equation with flat and Brownian initial conditions, Phys. Rev. E, Paper No. 054142, 15 pp. (2022) · doi:10.1103/physreve.105.054142
[49] Krajenbrink, Alexandre, Crossover from the macroscopic fluctuation theory to the Kardar-Parisi-Zhang equation controls the large deviations beyond Einstein’s diffusion, Phys. Rev. E, Paper No. 014137, 32 pp. (2023) · doi:10.1103/physreve.107.014137
[50] Krajenbrink, Alexandre, Systematic time expansion for the Kardar-Parisi-Zhang equation, linear statistics of the GUE at the edge and trapped fermions, Nuclear Phys. B, 239-305 (2018) · Zbl 1400.82194 · doi:10.1016/j.nuclphysb.2018.09.019
[51] Kamenev, Alex, Short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation: starting from a parabola, Phys. Rev. E, 032108, 9 pp. (2016) · doi:10.1103/physreve.94.032108
[52] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), no. 9, 889. · Zbl 1101.82329
[53] Alexandre Krajenbrink, Beyond the typical fluctuations: a journey to the large deviations in the Kardar-Parisi-Zhang growth model, Ph.D. Thesis, PSL Research University, 2019.
[54] Krajenbrink, Alexandre, From Painlev\'{e} to Zakharov-Shabat and beyond: Fredholm determinants and integro-differential hierarchies, J. Phys. A, Paper No. 035001, 51 pp. (2021) · Zbl 1519.37085 · doi:10.1088/1751-8121/abd078
[55] Le Doussal, Pierre, Large deviations for the Kardar-Parisi-Zhang equation from the Kadomtsev-Petviashvili equation, J. Stat. Mech. Theory Exp., 043201, 43 pp. (2020) · Zbl 1457.82362 · doi:10.1088/1742-5468/ab75e4
[56] Pierre Le Doussal, Satya N. Majumdar, Alberto Rosso, and Gr\'egory Schehr, Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation and edge fermions at high temperature, Phys. Rev. Lett. 117 (2016), no. 7, 070403.
[57] Pierre Le Doussal, Satya N. Majumdar, and Gr\'egory Schehr, Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times, EPL 113 (2016), no. 6, 60004.
[58] Lin, Yier, Lyapunov exponents of the half-line SHE, J. Stat. Phys., Paper No. 37, 34 pp. (2021) · Zbl 1467.82065 · doi:10.1007/s10955-021-02772-8
[59] P. L. Lions, College de France course on mean-field games, College de France, 2011, 2007.
[60] Lasry, Jean-Michel, Mean field games, Jpn. J. Math., 229-260 (2007) · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[61] Lin, Yier, Short time large deviations of the KPZ equation, Comm. Math. Phys., 359-393 (2021) · Zbl 1469.82024 · doi:10.1007/s00220-021-04050-w
[62] Meerson, Baruch, Large deviations of surface height in the Kardar-Parisi-Zhang equation, Phys. Rev. Lett., 070601, 5 pp. (2016) · doi:10.1103/PhysRevLett.116.070601
[63] Mallick, Kirone, Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process, Phys. Rev. Lett., Paper No. 040601, 7 pp. (2022) · doi:10.1103/physrevlett.129.040601
[64] Meerson, Baruch, Height distribution tails in the Kardar-Parisi-Zhang equation with Brownian initial conditions, J. Stat. Mech. Theory Exp., 103207, 22 pp. (2017) · Zbl 1457.82111 · doi:10.1088/1742-5468/aa8c12
[65] Baruch Meerson and Arkady Vilenkin, Large fluctuations of a Kardar-Parisi-Zhang interface on a half line, Phys. Rev. E 98 (2018), no. 3, 032145. · Zbl 1459.82205
[66] Quastel, Jeremy, The one-dimensional KPZ equation and its universality class, J. Stat. Phys., 965-984 (2015) · Zbl 1327.82069 · doi:10.1007/s10955-015-1250-9
[67] Jeremy Quastel and Li-Cheng Tsai, Hydrodynamic large deviations of TASEP, 2104.04444, 2021. · Zbl 1483.60093
[68] Quastel, Jeremy, Current developments in mathematics, 2011. Introduction to KPZ, 125-194 (2012), Int. Press, Somerville, MA · Zbl 1316.60019
[69] Igor Swiecicki, Thierry Gobron, and Denis Ullmo. Schr\"odinger approach to mean field games. Phys Rev Lett, 116(12):128701, 2016. · Zbl 1400.91039
[70] Naftali R. Smith, Alex Kamenev, and Baruch Meerson, Landau theory of the short-time dynamical phase transitions of the Kardar-Parisi-Zhang interface, Phys. Rev. E 97 (2018), no. 4, 042130. · Zbl 1459.82145
[71] Naftali R. Smith and Baruch Meerson, Exact short-time height distribution for the flat Kardar-Parisi-Zhang interface, Phys. Rev. E 97 (2018), no. 5, 052110. · Zbl 1459.82145
[72] Sasorov, Pavel, Large deviations of surface height in the \(1+1\)-dimensional Kardar-Parisi-Zhang equation: exact long-time results for \(\lambda H<0\), J. Stat. Mech. Theory Exp., 063203, 13 pp. (2017) · Zbl 1457.82301 · doi:10.1088/1742-5468/aa73f8
[73] Smith, Naftali R., Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation, J. Stat. Mech. Theory Exp., 023202, 39 pp. (2018) · Zbl 1459.82145 · doi:10.1088/1742-5468/aaa783
[74] Smith, Naftali R., Time-averaged height distribution of the Kardar-Parisi-Zhang interface, J. Stat. Mech. Theory Exp., 053207, 22 pp. (2019) · doi:10.1088/1742-5468/ab16c1
[75] Zakharov, V. E., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP. \v{Z}. \`Eksper. Teoret. Fiz., 118-134 (1971)
[76] Trogdon, Thomas, Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions, xviii+373 pp. (2016), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1350.30003
[77] Touchette, Hugo, The large deviation approach to statistical mechanics, Phys. Rep., 1-69 (2009) · doi:10.1016/j.physrep.2009.05.002
[78] Tsai, Li-Cheng, Exact lower-tail large deviations of the KPZ equation, Duke Math. J., 1879-1922 (2022) · Zbl 1492.60069 · doi:10.1215/00127094-2022-0008
[79] Varadhan, Srinivasa R. S., Stochastic analysis on large scale interacting systems. Large deviations for the asymmetric simple exclusion process, Adv. Stud. Pure Math., 1-27 (2004), Math. Soc. Japan, Tokyo · Zbl 1114.60026 · doi:10.2969/aspm/03910001
[80] Wang, Li He, A geometric approach to the Calder\'{o}n-Zygmund estimates, Acta Math. Sin. (Engl. Ser.), 381-396 (2003) · Zbl 1026.31003 · doi:10.1007/s10114-003-0264-4
[81] Yeh, J., Real analysis, xxiv+815 pp. (2014), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1301.26002 · doi:10.1142/9037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.