×

Multiplier ideals of plane curve singularities via Newton polygons. (English) Zbl 1537.14006

Multiplier ideals are an interesting tool in singularity theory and birational geometry. From them one can get information on the type of singularity corresponding to an ideal, divisor or metric. They also accomplish several useful vanishing theorems.
This interesting paper considers multiplier ideals \(J(\xi C)_o\) corresponding to a plane curve singularity \((C,o)\) on a smooth complex algebraic surface \(S\) and a rational number \(\xi >0\) and the authors give a conceptually new description of these multiplier ideals (and their associated jumping numbers) in terms of a finite set of Newton polygons appearing in a toroidal embedded resolution process of the singularity.
Section 3.4 of the paper describes the construction of the above mentioned toroidal resolution following ideas of García Barroso, Popescu-Pampu and the first author generalizing processes previously introduced by several other authors.
Set \(\mathcal{C}\{x,y\}\) the local ring of germs of holomorphic functions of \(S\) at \(o\). The main results are Theorem 4.9 and 4.20. Roughly speaking, Theorem 4.9 states that \(J(\xi C)_o\) consists of the functions \(h \in \mathcal{C}\{x,y\}\) satisfying certain inclusions involving Newton polygons of the the singularities given by \(h\) and \(C\) with respect to some crosses which are pairs defined by germs of exceptional divisors and suitable curvettes intersecting them. Theorem 4.20 shows a way of regarding jumping numbers and multiplier ideals depending on monomial expressions.
From the results in the paper, it can be deduced that the computation of multiplier ideals and jumping numbers of \(C\) is reduced to an optimization problem in terms of log discrepancies of the rupture components of \(\pi*(C)\), \(\pi\) being a toroidal embedded resolution, and values attached to the corresponding exceptional divisors.

MSC:

14B05 Singularities in algebraic geometry
14F18 Multiplier ideals
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14H20 Singularities of curves, local rings

References:

[1] Alberich-Carramiñana, M., Álvarez Montaner, J., Dachs-Cadefau, F. (2016). Multiplier ideals in two-dimensional local rings with rational singularities. Michigan Math. J.65(2):287-320. DOI: . · Zbl 1357.14025
[2] Alberich-Carramiñana, M., Álvarez Montaner, J., Blanco, G. (2021). Monomial generators of complete planar ideals. J. Algebra Appl.20(3):Article 2150032. DOI: . · Zbl 1472.13016
[3] A’Campo, N., Oka, M. (1996). Geometry of plane curves via Tschirnhausen resolution tower. Osaka J. Math.33(4):1003-1033. · Zbl 0904.14014
[4] Berkesch, C., Leykin, A. (2010). Algorithms for Bernstein-Sato polynomials and multiplier ideals. Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. New York, NY: Association for Computing Machinery, pp. 99-106. · Zbl 1321.68522
[5] Budur, N. (2012). Singularity invariants related to Milnor fibers: survey. In: Campillo, A., Cardona, G., Melle-Hernández, A., Veys, W., Zúñiga-Galindo, A., eds. Zeta Functions in Algebra and Geometry. Contemporary Mathematics, Vol. 566. Providence, RI: American Mathematical Society, pp. 161-187. · Zbl 1254.14005
[6] Campillo., A., Galindo, C. (2003). The Poincaré series associated with finitely many monomial valuations. Math. Proc. Cambridge Philos. Soc. 134(3):433-443. DOI: . · Zbl 1099.13507
[7] Cox, D. A., Little, J. B., Schenck, H. K. (2011). Toric varieties. Graduate Studies in Mathematics, Vol. 124. Providence, RI: American Mathematical Society. · Zbl 1223.14001
[8] Cassou-Noguès, Pi., Libgober, A. (2014). Multivariable Hodge theoretical invariants of germs of plane curves. II. In: Campillo, A., Kuhlmann, F.-V., Teissier, B., eds. Valuation Theory in Interaction. EMS Ser. Congr. Rep. Zürich: European Mathematical Society, pp. 82-135. · Zbl 1319.14024
[9] Delgado, F., Galindo, C., Núñez, A. (2008). Generating sequences and Poincaré series for a finite set of plane divisorial valuations. Adv. Math. 219(5):1632-1655. DOI: . · Zbl 1154.14001
[10] Dũng Tráng, L., Oka, M. (1995). On resolution complexity of plane curves. Kodai Math. J. 18(1):1-36. · Zbl 0844.14010
[11] Ein, L., Lazarsfeld, R., Smith, K. E., Varolin, D. (2004). Jumping coefficients of multiplier ideals. Duke Math. J.123(3):469-506. DOI: . · Zbl 1061.14003
[12] Ewald, G. (1996). Combinatorial Convexity and Algebraic Geometry. New York, NY: Springer-Verlag. · Zbl 0869.52001
[13] Favre, C., Jonsson, M. (2004). The valuative tree, Lecture Notes in Mathematics, Vol. 1853. Berlin: Springer-Verlag. · Zbl 1064.14024
[14] Favre, C., Jonsson, M. (2005). Valuations and multiplier ideals. J. Amer. Math. Soc.18(3):655-684. DOI: . · Zbl 1075.14001
[15] Fulton, W. (2016). Introduction to Toric Varieties. Annals of Mathematics Studies, Vol. 131. Princeton: Princeton University Press.
[16] Guzmán Durán, C. R. (2018). Ideales multiplicadores de curvas planas irreducibles. Ph.D. dissertation. Centro de investigación en matemáticas, Guanajuato, Mexico. http://cimat.repositorioinstitucional.mx/jspui/handle/1008/725
[17] García Barroso, E. R., González Perez, P. D., Popescu-Pampu, P. (2019). The valuative tree is the projective limit of Eggers-Wall trees. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 113(4):4051-4105. DOI: . · Zbl 1441.14013
[18] García Barroso, E. R., González Perez, P. D., Popescu-Pampu, P. (2020). The combinatorics of plane curve singularities. How Newton polygons blossom into lotuses. In: Cisneros-Molina, J. L., Dung Tráng, L., Seade, J., eds. Handbook of Geometry and Topology of Singularities I. Cham: Springer, pp. 1-150. · Zbl 1482.14034
[19] González Pérez, P. D. (2003). Toric embedded resolutions of quasi-ordinary hypersurface singularities. Ann. Inst. Fourier (Grenoble). 53(6):1819-1881. DOI: . · Zbl 1052.32024
[20] Hyry, E., Järvilehto, T. (2011). Jumping numbers and ordered tree structures on the dual graph. Manuscripta Math.136(3):411-437. DOI: . · Zbl 1235.13018
[21] Hyry, E., Järvilehto, T. (2018). A formula for jumping numbers in a two-dimensional regular local ring. J. Algebra516:437-470. DOI: . · Zbl 1430.14045
[22] Howald, J. A. (2001). Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc.353(7):2665-2671. DOI: . · Zbl 0979.13026
[23] Howald, J. A. (2003). Multiplier ideals of sufficiently general polynomials. arXiv:math/0303203 [math.AG].
[24] Järvilehto, T. (2011). Jumping numbers of a simple complete ideal in a two-dimensional regular local ring. Mem. Amer. Math. Soc. 214:78. DOI: . · Zbl 1233.13008
[25] Jonsson, M. (2015). Dynamics on Berkovich spaces in low dimensions. In: Ducros, A., Favre, C., Nicaise, J., eds. Berkovich Spaces and Applications. Lecture Notes in Math., Vol. 2119. Cham: Springer, pp. 205-366. · Zbl 1401.37103
[26] Lazarsfeld, R. (2004). Positivity in algebraic geometry. II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 49. Heidelberg, Berlin: Springer. · Zbl 1093.14500
[27] Naie, D. (2009). Jumping numbers of a unibranch curve on a smooth surface. Manuscripta Math.128(1):33-49. DOI: . · Zbl 1165.14025
[28] Lê, D. T., Oka, M., (1995). On resolution complexity of plane curves. Kodai Math. J.18(1):1-36 DOI: . · Zbl 0844.14010
[29] Oda, T. (1988). Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15. Berlin: Springer-Verlag. · Zbl 0628.52002
[30] Oka, M. (1996). Geometry of plane curves via toroidal resolution. In: Campillo López, A., Narváez Macarro, L., eds. Algebraic Geometry and Singularities. Basel: Birkhäuser, pp. 95-121. · Zbl 0857.14014
[31] Robredo Buces, M. (2019). Invariants of singularities, generating sequences and toroidal structures. Ph.D. dissertation. Universidad Complutense de Madrid, Madrid, Spain. https://www.icmat.es/Thesis/2019/Tesis_Miguel_Robredo.pdf
[32] Shibuta, T. (2011). Algorithms for computing multiplier ideals. J. Pure Appl. Algebra215(12):2829-2842. DOI: . · Zbl 1233.14015
[33] Spivakovsky, M. (1990). Valuations in function fields of surfaces. Amer. J. Math. 112(1):107-156. DOI: . · Zbl 0716.13003
[34] Smith, K. E., Thompson, H. M. (2007). Irrelevant exceptional divisors for curves on a smooth surface. In: Corso, A., Migliore, J, Polini, C., eds. Algebra, Geometry and their Interactions. Contemporary Mathematics, Vol. 448. Providence, RI: American Mathematical Society, 245-254. · Zbl 1141.14004
[35] Schwede, K., Tucker, K. (2012). A survey of test ideals. In: Francisco, C., Klingler, L., Sather-Wagstaff, S., Vassilev, J. C. eds. Progress in Commutative Algebra 2. Berlin: Walter de Gruyter, pp. 39-99. · Zbl 1254.13007
[36] Tucker, K. (2010). Jumping numbers and multiplier ideals on algebraic surfaces. Ph.D. dissertation. University of Michigan, Ann Arbor, MI: ProQuest LLC.
[37] Tucker, K. (2010). Jumping numbers on algebraic surfaces with rational singularities. Trans. Amer. Math. Soc.362(6):3223-3241. DOI: . · Zbl 1194.14026
[38] Zhang, M. (2019). Multiplier ideals of analytically irreducible plane curves. arXiv:1907.06281v3 [math.AG].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.