×

Upper estimates of the Morse numbers for the matrix elements of real linear irreducible representations of compact connected simple Lie groups. (English. Russian original) Zbl 1521.22010

St. Petersbg. Math. J. 33, No. 6, 971-980 (2022); translation from Algebra Anal. 33, No. 6, 107-120 (2021).
Summary: The Morse numbers of spaces of matrix elements for real irreducible linear representations of compact connected simple Lie groups are estimate from above in a variety of ways, in terms of the dimension, the Dynkin index of the representation, the eigenvalues of the invariant Laplace operator, and the volume of the group.

MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
Full Text: DOI

References:

[1] L. S. Pontryagin, Homologies in compact Lie groups, Mat. Sb. 6 (1939), no. 3, 389-422. 0001563 · Zbl 0022.31602
[2] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029. 105694 · Zbl 0101.39702
[3] C. Gorodski and G. Thorbergsson, The classification of taut irreducible representations, J. Reine Angew. Math. 555 (2003), 187-235. 1956597 · Zbl 1024.53039
[4] M. V. Meshcheryakov, Classification of taut real irreducible linear representations of compact connected Lie groups, Algebra i Analiz 32 (2020), no. 1, 40-50; English transl., St. Petersburg Math. J. 32 (2021), no. 1, 31-38. 4057875 · Zbl 1534.22001
[5] N. Bourbaki, Elements de mathematique: groupes et algebres de Lie, Ch. 9, Groupes de Lie reels compacts, Masson, Paris, 1982. 682756 · Zbl 0505.22006
[6] A. G. Kushnirenko, A Newton polyhedron and the number of solutions of a system of k equations in k unknowns, Uspekhi Mat. Nauk 30 (1975), no. 2, 266-267. (Russian)
[7] B. Ya. Kazarnovskii, Newton polyhedra and Bezout’s formula for matrix functions of finite-dimensional representations, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 73-74; English transl., Funct. Anal. Appl. 21 (1987), no. 4, 319-321. 925078 · Zbl 0662.22014
[8] Sh. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Intersci. Tracts Pure Appl. Math., No. 15, Intersci. Publ. John Wiley & Sons, Inc., New York, 1969. 0238225 · Zbl 0175.48504
[9] S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. II, Michigan J. Math. 5 (1958), 5-12. 97834 · Zbl 0095.35803
[10] N. Kuiper, Minimal total curvature. A look at old and new results, Uspekhi Mat. Nauk 40 (1985), no. 4, 49-54; English transl., Russian Math. Surveys 40 (1985), no. 4, 49-55. 807784 · Zbl 0584.53025
[11] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Nauka, Leningrad, 1980; English transl., Grundlehren Math. Wiss., Bd. 285, Springer-Verlag, Berlin, 1988. 936419
[12] L. Nicolaescu, Critical sets of random smooth functions on compact manifolds, Asian J. Math. 19 (2015), no. 3, 391-432. 3361277 · Zbl 1341.60081
[13] \bysame , Complexity of random smooth functions on compact manifolds, Indiana Univ. Math. J. 63 (2014), no. 4, 1037-1065. 3263921 · Zbl 1307.58016
[14] A. L. Onishchik, Topology of transitive transformation groups, J. A. Barth Verlag, Leipzig, 1994. 1266842 · Zbl 0796.57001
[15] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Pure Appl. Math., vol. 15, Acad. Press, New York, 1964. 0169148 · Zbl 0132.16003
[16] K. Abe and I. Yokota, Volumes of compact symmetric spaces, Tokyo J. Math. 20 (1997), 87-105. 1451862 · Zbl 0884.53040
[17] K. Kozhasov, On spherical harmonics with maximum number of critical points, Intern. Conf. “Contemporary Mathematics” (Moscow, Russia, December, 2017), Moscow, 2017, 18-23.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.